Furman University Electronic Journal of Undergraduate Mathematics Volume 14, 1 - 4, 2009

INTEGERS OF THE FORM $a^2 \pm b^2$

ROBERT ZEMAN

ABSTRACT. This paper explores which integers can be expressed in the form $a^2 \pm 2b^2$ by using rings of the form $\mathbb{Z}[\sqrt{d}]$, particularly when d = 2 and d = -2.

1. INTRODUCTION AND PRELIMINARIES

It has been proven that an integer n can be expressed as the sum of two squares if and only if each prime $p \equiv 3 \pmod{4}$ that divides n occurs to an even power in the prime factorization of n [1, Theorem 13.3]. The goal of this work is to describe which integers can be expressed in the forms $a^2 + 2b^2$ and $a^2 - 2b^2$.

We will assume familiarity with elementary notions from divisor theory in integral domains such as can be found in [2]. In particular, for a square-free integer d, we shall make frequent use of the norm function on $\mathbb{Z}[\sqrt{d}]$: for $x = s + t\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, we set $N(x) = s^2 - dt^2$. We collect for ease of reference some of the results we shall need. Proofs of our first two results can be found in [2].

Lemma 1. Let d be a square-free integer., and let $a, b \in \mathbb{Z}[\sqrt{d}]$. Then:

- (i) a is a unit of $\mathbb{Z}[\sqrt{d}]$ if and only if $N(a) = \pm 1$.
- (ii) N(a) = 0 if and only if a = 0.
- (iii) The norm function is multiplicative; that is, N(ab) = N(a)N(b).

Lemma 2. If d is a square-free integer, $a \in \mathbb{Z}[\sqrt{d}]$, and N(a) = p, where p is prime, then a is irreducible in $\mathbb{Z}[\sqrt{d}]$.

Lemma 3. Let p be an odd prime. If p can be expressed in the form $a^2 + 2b^2$, then $p \equiv 1 \text{ or } 3 \pmod{8}$, and if p can be expressed in the form $a^2 - 2b^2$, then $p \equiv 1 \text{ or } 7 \pmod{8}$.

Proof. One can easily see that $a^2, b^2 \equiv 0, 1$, or 4 (mod 8). Thus $2b^2 \equiv 0$ or 2 (mod 8), and so $a^2 + 2b^2 \equiv 0, 1, 2, 3, 4$ or 6 (mod 8) and $a^2 - 2b^2 \equiv 0, 1, 2, 4, 6$ or 7 (mod 8). Therefore, given an odd prime $p = a^2 + 2b^2$, then $p \equiv 1$ or 3 (mod 8) and given an odd prime $p = a^2 - 2b^2$, then $p \equiv 1$ or 7 (mod 8).

Lemma 4. Let p be an odd prime. Then 2 is a quadratic residue of p when $p \equiv 1$ or 7 (mod 8), and -2 is a quadratic residue of p when $p \equiv 1$ or 3 (mod 8).

Proof. See [1].

Received by the editors April 10, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 13A99.

Key words and phrases. prime, irreducible, unique factorization domain.

The author would like to thank his sponsor, Professor Evan Houston of UNC Charlotte.

ROBERT ZEMAN

2. Characterization of integers of the form $a^2\pm 2b^2$

We now specialize $\mathbb{Z}[\sqrt{d}]$ to the cases $d = \pm 2$.

Theorem 5. If $a \in \mathbb{Z}[\sqrt{-2}]$ and $N(a) = p^2$, p prime, with $p \equiv 5 \text{ or } 7 \pmod{8}$, then a is irreducible in $\mathbb{Z}[\sqrt{-2}]$. If $a \in \mathbb{Z}[\sqrt{2}]$ and $N(a) = p^2$, p prime, with $p \equiv 3 \text{ or } 5 \pmod{8}$, then a is irreducible in $\mathbb{Z}[\sqrt{2}]$.

Proof. Let $a \in \mathbb{Z}[\sqrt{d}]$ with $d = \pm 2$, and assume that $N(a) = p^2$ with p prime. Suppose that a = bc, with $b, c \in \mathbb{Z}[\sqrt{d}]$. In order to prove that a is irreducible, we wish to show that N(b) = 1 or N(c) = 1. If this is false, then $N(b) = N(c) = \pm p$. If d = -2 and $p \equiv 5$ or 7 (mod 8), then $p = N(b) = s^2 + 2b^2$ for $s, t \in \mathbb{Z}$, a contradiction to Lemma 3. A similar contradiction is obtained in the case d = 2 and $p \equiv 3$ or 5 (mod 8).

Lemma 6. $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\sqrt{2}]$ are unique factorization domains.

Proof. A proof that $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization can be found in [2]. We present a unified proof for both cases.

Let $a = x + y\sqrt{\pm 2}$ and $b = s + t\sqrt{\pm 2} \neq 0$. Then $|N(a)| = |x^2 \mp 2y^2|$ and $|N(ab)| = |x^2 \mp 2y^2||s^2 \mp 2t^2|$. Since $|s^2 \mp 2t^2| \ge 1$, $|x^2 \mp 2y^2| \le |x^2 \mp 2y^2||s^2 \mp 2t^2|$. Hence $|N(a)| \le |N(ab)|$.

Now,

$$\frac{a}{b} = \frac{x + y\sqrt{\pm 2}}{s + t\sqrt{\pm 2}} = \frac{(x + y\sqrt{\pm 2})(s - t\sqrt{\pm 2})}{s^2 \mp 2t^2} = \frac{xs \mp 2yt}{s^2 \mp 2t^2} + \frac{(ys - xt)\sqrt{\pm 2}}{s^2 \mp 2t^2}.$$

Let $c = (xy \mp 2yt)/(s^2 \mp 2t^2)$ and $d = (ys - xt)/(x^2 \mp 2t^2)$. Then $c, d \in \mathbb{Q}$ and there are integers m, n such that $|c - m| \le 1/2$ and $|d - n| \le 1/2$. Therefore, $a = b(c + d\sqrt{\pm 2}) = b((c - m + m) + (d - n + n)\sqrt{\pm 2} = b(m + n\sqrt{\pm 2}) + b((c - m) + (d - n)\sqrt{\pm 2})$. Then a = bq + r, where $q = m + n\sqrt{\pm 2}$ and $r = b((c - m) + (d - n)\sqrt{\pm 2}$. Since r = a - bq, and $a, b, q \in \mathbb{Z}[\sqrt{\pm 2}]$, then $r \in \mathbb{Z}[\sqrt{\pm 2}]$. Also, $|N(r)| = |N(b)||N(c - m) + (d - n)\sqrt{\pm 2}| \le |N(b)||(1/2)^2 \mp 2(1/2)^2| \le |N(b)|$. That is, a = bq + r with $0 \le |N(r)| < |N(b)|$.

Therefore, $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\sqrt{2}]$ are Euclidean domains and hence are unique factorization domains.

Theorem 7. Let p be an odd prime. If $p \equiv 1$ or 3 (mod 8), then p is not irreducible in $\mathbb{Z}[\sqrt{-2}]$, and if $p \equiv 1$ or 7 (mod 8), then p is not irreducible in $\mathbb{Z}[\sqrt{2}]$.

Proof. Given $p \equiv 1$ or 3 (mod 8), then -2 is a quadratic residue of p by Lemma 4. Therefore, there exists some $x \in \mathbb{Z}$ such that $p|(x^2 + 2)$. In $\mathbb{Z}[\sqrt{-2}]$, $x^2 + 2 = (x + \sqrt{-2})(x - \sqrt{-2})$. Therefore, $p|(x + \sqrt{-2})(x - \sqrt{-2})$. If p were irreducible, then $p|x + \sqrt{-2}$ or $p|x - \sqrt{-2}$ because $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization domain. This produces an equation $x \pm \sqrt{-2} = p(a + b\sqrt{-2})$ from which it follows that $pb = \pm 1$. This is impossible. Therefore, p is not irreducible in $\mathbb{Z}[\sqrt{-2}]$.

Given $p \equiv 1$ or 7 (mod 8), then 2 is a quadratic residue of p by Lemma 4. Therefore, there exists some $x \in \mathbb{Z}$ such that $p|(x^2-2)$. Since $x^2-2 = (x+\sqrt{2})(x = \sqrt{2})$, irreducibility of p would imply that $p|x + \sqrt{2}$ or $p|x - \sqrt{2}$, because $\mathbb{Z}[\sqrt{2}]$ is a unique factorization domain. This produces an equation $x \pm \sqrt{2} = p(a+b\sqrt{2})$, from which it follows that $pb = \pm 1$. Again, this is impossible, and p is not irreducible in $\mathbb{Z}[\sqrt{2}]$. **Theorem 8.** Let p be an odd prime. If $p \equiv 1$ or 3 (mod 8), then p can be written in the form $a^2 + 2b^2$, and if $p \equiv 1$ or 7 (mod 8), then p can be written in the form $a^2 - 2b^2$.

Proof. Given $p \equiv 1$ or 3 (mod 8), then p is not irreducible in $\mathbb{Z}[\sqrt{-2}]$, and given $p \equiv 1$ or 7 (mod 8), then p is not irreducible in $\mathbb{Z}[\sqrt{2}]$ by Theorem 7. Then $p = (a + b\sqrt{\mp 2})(c + d\sqrt{\mp 2})$, where neither term on the right is a unit. Then $p^2 = (a^2 \pm 2b^2)(c^2 \pm 2d^2)$. Therefore, $p = a^2 \pm 2b^2 = c^2 \pm 2d^2$ (because $a^2 \pm 2b^2$ and $c^2 \pm 2d^2$ are not units). The desired conclusion follows easily.

Lemma 9. The product of two numbers of the form $a^2 \pm 2b^2$ is itself of the form $a^2 \pm 2b^2$.

Proof. We have

$$\begin{aligned} (a^2 \pm 2b^2)(c^2 \pm 2d^2) &= (a + b\sqrt{\mp 2})(a - b\sqrt{\mp 2})(c + d\sqrt{\mp 2})(c - d\sqrt{\mp 2}) \\ &= (a + b\sqrt{\mp 2})(c + d\sqrt{\mp 2})(a - b\sqrt{\mp 2})(c - d\sqrt{\mp 2}) \\ &= ((ac \mp 2bd) + (ad + bc)\sqrt{\mp 2})((ac \mp 2bd) - (ad + bc)\sqrt{\mp 2}) \\ &= (ac \mp 2bd)^2 \pm 2(ad + bc)^2 \end{aligned}$$

We are now ready to state and prove the main result of this work.

Theorem 10. Let $n = N^2m$, where *m* is square-free. Then *n* can be written in the form $a^2 + 2b^2$ if and only if *m* contains no prime factor *p* such that $p \equiv 5$ or 7 (mod 8), and *n* can be written in the form $a^2 - 2b^2$ if and only if *m* contains no prime factor *p* such that $p \equiv 3$ or 5 (mod 8).

Proof. Suppose that we have $n = N^2m = a^2 \pm 2b^2$. Let $d = \gcd(a, b)$, and write a = dr, b = ds, so that $n = N^2m = d^2(r^2 \pm 2s^2)$. Then $d^2|N^2m$, and, given that m is square-free, we have that $d^2|N^2$. Hence we can write $(N^2/d^2)m = r^2 \pm 2s^2 = t$ for some integer t. Let p be a prime factor of t. Then $r^2 \pm 2s^2 \equiv 0 \pmod{m}$. Now, since r and s are relatively prime, at least one must be relatively prime to p. If s is not relatively prime to p, then $r^2 = t \mp 2s^2$, and, if p|s, then p|r, a contradiction. Hence it must be that p is relatively prime to s. Thus there exists some s' such that $ss' \equiv 1 \pmod{p}$. Multiplying the equation $r^2 \pm 2s^2 \equiv 0 \pmod{p}$ then yields $(rs')^2 \pm 2 \equiv 0 \pmod{p}$, or $(rs')^2 \equiv \mp 2 \pmod{p}$. Thus $\mp 2 \log a$ quadratic residue of p if and only if $p \equiv 1$ or $3 \pmod{8}$, and 2 is a quadratic residue of p if and only if $p \equiv 1$ or $7 \pmod{8}$ by Lemma 4. Thus if n is of the form $a^2 + 2b^2$, then each prime factor of (t and hence) m satisfies the condition $p \equiv 1$ or $7 \pmod{8}$.

For the converse, the condition on m and Theorem 8 guarantee that each odd prime factor of m can be written in the appropriate form. Of course, $2 = 0^2 + 2 \cdot 1^2 = 2^2 - 2 \cdot 1^2$. Thus each prime factor of m can be written in the appropriate form, and the result follows from Lemma 9.

Theorem 10 is our desired result. It shows that a number n can be written in the form $a^2 + 2b^2$ (respectively, $a^2 - 2b^2$) if and only if each prime $p \equiv 5$ of 7 (mod 8) (respectively, $p \equiv 3$ or 5 (mod 8)) that divides n occurs to an even power in the prime factorization of n.

ROBERT ZEMAN

References

- [1] Burton, David, Elementary number theory (sixth edition), McGraw-Hill, Boston, 2007.
- [2] Hungerford, Thomas, Abstract algebra, an introduction (2nd edition), Thomson Learning, Inc., 1997.

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 U.S.A.

E-mail address: rmzeman.uncc.edu

Sponsor: Evan Houston, Professor of Mathematics, UNC Charlotte $E\text{-}mail\ address:\ \texttt{eghousto@uncc.edu}$