
Furman University
Electronic Journal of Undergraduate Mathematics
Volume 12, 5 – 20, 2007

THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO
LIMITED-MEMORY ALGORITHMS

ZHIWEI (TONY) QIN

Abstract. For the solution of linear systems, the conjugate gradient (CG)

and BFGS are among the most popular and successful algorithms with their
respective advantages. The limited-memory methods have been developed

to combine the best of the two. We describe and examine CG, BFGS, and

two limited-memory methods (L-BFGS and VSCG) in the context of linear
systems. We focus on the relationships between each of the four algorithms,

and we present numerical results to illustrate those relationships.

1. Introduction

Systems of linear equations arise in such diverse areas as digital signal processing,
forecasting, and telecommunications. Hence solving linear systems in an efficient
and robust manner has significant scientific and social impact. Here, we are con-
cerned with finding the solution to

(1.1) Ax = b,

where x ∈ Rn, and A is an n×n symmetric positive definite matrix. In the past fifty
years, many numerical algorithms have been proposed to achieve this goal. Among
them, the most well-known and established are the conjugate gradient (CG) method
and the family of quasi-Newton (QN) methods. Although quasi-Newton methods
are normally thought of as nonlinear minimization algorithms, they can be used to
solve systems of linear equations by instead applying them to the quadratic problem

(1.2) min
x∈Rn

1
2
xTAx− bTx.

In this thesis, whenever the quasi-Newton family is conerned, we will focus on the
BFGS method, which has been proved most effective among all the Quasi-Newton
methods. The delicate relationship between CG and BFGS has been explored ex-
tensively in the past, and new limited-memory algorithms based on CG and BFGS
have been proposed to address the problem of large memory requirement for BFGS.
Two competing algorithms of this type are the L-BFGS method described by No-
cedal [8] and the variable storage conjugate gradient (VSCG) method published by
Buckley and LeNir [2]. In this thesis, we describe, in the context of linear systems,
the CG, BFGS, and the limited-memory methods with a unified approach empha-
sizing the relationships between each of them. We compare their performances on

Received by the editors December 5, 2007.

2000 Mathematics Subject Classification. 65K10, 90C53.
Key words and phrases. Numerical optimization, Conguate gradient, BFGS, Quasi-Newton,

Limited-memory.
The author would like to express his sincere gratitude and appreciation to his sponsor, Professor

Michael Friedlander, for all the help and guidance throughout this project.

5



6 ZHIWEI (TONY) QIN

test matrices, in particular, highly ill-conditioned matrices, and we present the re-
sults of numerical experiments. We close with some recommendations on when to
use the respective algorithms.

2. Notation

In this thesis, lower-case roman letters denote column vectors, and upper-case
letters denote matrices. Greek letters are reserved for scalars. In the context of
preconditioned CG (PCG), we use H0 for the inverse of the preconditioner M , and
Hk for the updated matrix based on H0 at iteration k. In the context of BFGS,
Hk denotes the k-th approximation to the inverse of the Hessian matrix. For both
CG and BFGS at iteration k, xk denotes the current approximate solution, and dk

is the search direction. We write

gk = ∇f(xk),
yk+1 = gk+1 − gk,

sk+1 = xk+1 − xk = αkdk,

where αk is the step length determined by exact line-search as

(2.1) αk =
gT

k H0gk

dT
kAdk

.

We will see later on why we use the same letters for CG and BFGS. The function
U(Hk, yk+1, sk+1) will be used to represent the BFGS update formula for Hk, i.e.

Hk+1 = U(Hk, yk+1, sk+1)(2.2)

= Hk −
sk+1y

T
k+1Hk +Hkyk+1s

T
k+1

sT
k+1yk+1

+

(
1 +

yT
k+1Hkyk+1

sT
k+1yk+1

)
sk+1s

T
k+1

sT
k+1yk+1

.(2.3)

3. The Conjugate Gradient method

The linear Conjugate Gradient method was first introduced by Hestenes and
Stiefel [5]. Here we present the most standard form.

Algorithm 3.1. CG ([9, Algorithm 5.2])
Initialization x0, g0 = Ax0 − b, d0 = −g0, k = 0
while not converged

αk =
gT

k gk

dT
kAdk

xk+1 = xk + αkdk

gk+1 = gk + αkAdk

βk+1 =
gT

k+1gk+1

gT
k gk

dk+1 = −gk+1 + βk+1dk

k = k + 1

end

The following theorem for linear CG will be useful later on and can be found in
many textbooks, such as [9].



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS7

Theorem 3.1. For linear CG at iteration k, suppose xk is not yet the solution of
(1.1), the following properties hold:

gT
k gi = 0 for i = 0, · · · , k − 1,(3.1)

dT
kAdi = 0 for i = 0, · · · , k − 1.(3.2)

In addition, with exact line-search (2.1), we have

(3.3) gT
k di = 0 for i = 0, · · · , k − 1.

Since αidi = si+1, it follows that

(3.4) gT
k si+1 = 0.

CG is often employed with the preconditioner M to improve its performance,
especially on ill-conditioned matrices. PCG simply transforms the original linear
system that CG solves by a change of variable, x̂ = Rx, where M = RTR. Now
instead of solving Ax = b, we solve the new system

(R−TAR−1)x̂ = R−T b

with the hope that R−TAR−1 has better eigenvalue distribution than A. In prac-
tice, the preconditioner often comes in the form of M = RTR, which is symmetric
positive definite, and so is its inverse H0. Equation (3.1) in the theorem above thus
becomes

(3.5) gT
k H0gi = 0 for i = 0, · · · , k − 1.

In the algorithm we present here, we actually use H0 instead of M to ease the
comparison with BFGS. Of course, H0 = M when M = I, and PCG reduces to the
standard CG method.

Algorithm 3.2. PCG ([9, Algorithm 5.3])
Initialization x0, preconditioner H0, g0 = Ax0 − b, d0 = −H0g0, k = 0
while not converged

αk =
gT

k H0gk

dT
kAdk

xk+1 = xk + αkdk

gk+1 = gk + αkAdk

βk+1 =
gT

k+1H0gk+1

gT
k H0gk

dk+1 = −H0gk+1 + βk+1dk

k = k + 1

end

We can see that the only differences between PCG and CG are the initial search
direction d0 and the “correction coefficient” βk+1. We also note that linear PCG
in this form is exactly same as the preconditioned Fletcher-Reeves nonlinear CG
(FR-CG) method [3], except that FR-CG requires a line-search for computing αk.
However, when applied on a quadratic function, we can assume that all line-searches
are exact, and we keep this assumption for the remaining parts of this thesis unless
otherwise specified. There are many other forms of the nonlinear CG method,



8 ZHIWEI (TONY) QIN

which differ from FR-CG only on the choice of βk+1. The Hestenes-Stiefel form
(HS-CG) [5] with a preconditioner H0 defines

(3.6) βHS
k+1 =

gT
k+1H0yk+1

yT
k+1dk

.

Here, we show that HS-CG is equivalent to FR-CG on quadratic functions. First,
recall that

(3.7) dk+1 = −H0gk+1 + βFR
k+1dk, for each k.

Hence,

gT
k dk = −gT

k H0gk + βFR
k gT

k dk−1

= −gT
k H0gk.

Now,

βHS
k+1 =

gT
k+1H0(gk+1 − gk)
(gk+1 − gk)T dk

=
gT

k+1H0gk+1

−gT
k dk

=
gT

k+1H0g
k+1

gT
k H0gk

= βFR
k+1,

which by Algorithm 3.2, we have

βFR
k+1 = βk+1.

Let us consider HS-CG. If

Qk = H0 −
sky

T
k H0

sT
k yk

,

then

dk+1 = −H0gk+1 +

(
gT

k+1H0yk+1

yT
k+1dk

)
dk

= −H0gk+1 +

(
gT

k+1H0yk+1

yT
k+1sk+1

)
sk+1

= −(H0 −
sk+1y

T
k+1H0

sT
k+1yk+1

)gk+1

= −Qk+1gk+1

dk = −Qkgk.

Note that Qk is not symmetric positive definite in most cases. Shanno [11] suggested
that we can augment/pad Qk to get

(3.8) Hk = H0 −
sky

T
k H0 +H0yks

T
k

sT
k yk

+
(

1 +
yT

k H0yk

sT
k yk

)
sks

T
k

sT
k yk

,

so that Hk is symmetric positive definite. By definition of the function U in (2.2)
and (2.3),

(3.9) HPCG
k = U(H0, yk, sk).



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS9

Buckley and LeNir [2] claim that −Qkgk and −Hkgk generate the identical search
directions. We give the detailed derivation here. With exact line-search and (3.4),
we have

Hkgk = H0gk −
(
sky

T
k H0 +H0yks

T
k

sT
k yk

)
gk +

(
1 +

yT
k H0yk

sT
k yk

)
sks

T
k

sT
k yk

gk

= H0gk −
sky

T
k H0gk

sT
k yk

− H0yks
T
k gk

sT
k yk

= H0gk −
αk−1dk−1y

T
k H0gk

αk−1dT
k−1yk

= H0gk − dk−1

(
yT

k H0gk

dT
k−1yk

)

= H0gk −
(
gT

k H0yk

yT
k dk−1

)
dk−1

= −dk.

Therefore,

Qkgk = Hkgk,

which means that we did not change anything by replacing Qk with Hk. So far, we
have established that the PCG search direction can be written in the QN-like form
dk = −Hkgk.

Moreover,

Hk = H0gk −
(
sky

T
k H0 +H0yks

T
k

sT
k yk

)
gk +

(
1 +

yT
k H0yk

sT
k yk

)
sks

T
k

sT
k yk

gk

= H0 −
sky

T
k H0

sT
k yk

− H0yks
T
k

sT
k yk

+
sk(yT

k H0yk)sT
k

‖sT
k yk‖2

+
sks

T
k

yT
k sk

=
(
I − sky

T
k

sT
k yk

)
H0

(
I − yks

T
k

sT
k yk

)
+
sks

T
k

yT
k sk

.

Thus,

(3.10) Hk = V T
k H0Vk + ρksks

T
k ,

where Vk = I − ρkyks
T
k , and ρk = 1

yT
k sk

. This expression is used in the L-BFGS
update later on.

4. The BFGS method

The BFGS method has proved the most effective among all quasi-Newton algo-
rithms [9]. The essence of BFGS can be summarized by a rank-two update on the



10 ZHIWEI (TONY) QIN

approximate Hessian matrix Bk as follows:

Bk+1 = Bk +
yk+1y

T
k+1

yT
k+1sk+1

−
Bksk+1s

T
k+1Bk

sT
k+1Bksk+1

= Bk +
yk+1y

T
k+1

yT
k+1sk+1

+
Bksk+1s

T
k+1Bk

−(sT
k+1Bk)sk+1

= Bk +
yk+1y

T
k+1

yT
k+1sk+1

+
αkBkdkαkd

T
kBk

αkgT
k αkdk

because Bkdk = −gk

= Bk +
yk+1y

T
k+1

yT
k+1sk+1

+
gkg

T
k

gT
k dk

.

By applying twice a special case of the Sherman-Morrison-Woodbury formula [4],

(4.1) (A− uvT )−1 = A−1 + αA−1uvTA−1,

where α = (1− vTA−1u)−1, and u and v are column vectors, it can be shown that
the approximate inverse Hessian satisfies

Hk+1 = B−1
k+1

= Hk −
sk+1y

T
k+1Hk +Hkyk+1s

T
k+1

sT
k+1yk+1

+

(
1 +

yT
k+1Hkyk+1

sT
k+1yk+1

)
sk+1s

T
k+1

sT
k+1yk+1

= V T
k+1HkVk+1 + ρk+1sk+1s

T
k+1 [by (3.10)](4.2)

= U(Hk, yk+1, sk+1)
HBFGS

k = U(Hk−1, yk, sk).(4.3)

By comparing the expressions for HCG
k (3.9) and HBFGS

k (4.3), it is clear that
PCG is really a special case of BFGS in which a fixed matrix H0 is updated at
each iteration. Since BFGS stores at each iteration the approximate inverse Hes-
sian matrix HBFGS

k which is usually dense while PCG does not, PCG can thus be
interpreted as the memory-less version of BFGS.

For implementation purpose, we follow the standard algorithm that makes use
of the approximate Hessian matrix Bk as it allows us to update Bk by two rank-one
updates to its Cholesky factor Rk [10]. Hence we just need to store Rk instead of
Bk, saving half amount of memory.

Algorithm 4.1. BFGS (on the quadratic function in (1.2))
Initialization x0, B0, g0 = Ax0 − b, k = 0



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS11

while not converged

Solve Bkdk = −gk for d

αk = − gT
k dk

dT
kAdk

sk+1 = αkdk

xk+1 = xk + sk+1

yk+1 = Ask+1

gk+1 = gk + yk+1

Bk+1 = Bk +
yk+1y

T
k+1

yT
k+1sk+1

+
gkg

T
k

gT
k dk

k = k + 1

end

As mentioned before, we use Rk instead of Bk in practice. The rank-two update

to Bk is accomplished through a rank-one update of
(

yk+1√
yT

k+1sk+1

)
to Rk, followed

by a rank-one downdate of
(

gk√
‖gT

k dk‖

)
to R

′

k, the updated Rk, i.e.

(4.4)

Bk+1 = Bk +
yk+1y

T
k+1

yT
k+1sk+1

+
gkg

T
k

gT
k dk

RT
k+1Rk+1 = RT

kRk +

 yk+1√
yT

k+1sk+1

 yk+1√
yT

k+1sk+1

T

−

 gk√
‖gT

k dk‖

 gk√
‖gT

k dk‖

T

.

The minus sign in (4.4) is because gT
k dk < 0 as shown below:

gk = −Bkdk

gT
k = −dT

kBk

gT
k dk = −dT

kBkdk.

Since Bk is symmetric positive definite, −dT
kBkdk < 0.

5. The relationship between CG and BFGS on quadratic functions

In the previous sections, we established the general relationship that PCG is a
special case of BFGS. In fact, we can further strengthen this relationship in the
context of linear systems, i.e. on quadratic functions.

Lemma 5.1. When the PCG and BFGS algorithms are applied to the quadratic
function (1.2) using the same starting point x0 and initial symmetric positive defi-
nite matrix H0, then

(5.1) dCG
j = dBFGS

j , j = 1, 2, · · · , n.



12 ZHIWEI (TONY) QIN

The detailed proof was given by Nazareth [7]. While we will not repeat the major
part of his proof here, we would like to provide the proof by induction that

(5.2) HBFGS
j gk = H0gk, 0 ≤ j < k ≤ n

for which he omitted the details.

Proof. When j = 0,

HBFGS
0 gk = H0gk.

Now, assume that

HBFGS
j−1 gk = H0gk,

so that
(5.3)

HBFGS
j gk = Hj−1gk−

sjy
T
j Hj−1 +Hj−1yjs

T
j

sT
j yj

gk +

(
1 +

yT
k+1Hkyk+1

sT
k+1yk+1

)
sk+1s

T
k+1

sT
k+1yk+1

gk.

In addition,

yT
j H

BFGS
j−1 gk = (gj − gj−1)THBFGS

j−1 gk

= gjHj−1gk − gj−1Hj−1gk

= gjH0gk − gj−1H0gk

= 0 [by (3.5)].(5.4)

Applying (5.4) and (3.4) to (5.3), we get

HBFGS
j gk = HBFGS

j−1 gk = H0gk.

This equivalence relation is further extended by Buckley in [1].

6. Limited-memory methods based on PCG and BFGS

Before we talk about the limited-memory methods, it is probably sensible to
consider the memory requirements for PCG and BFGS. For PCG, we need to store
only several n-vectors, hence the storage requirement is O(n). For BFGS, we have
to save Hk or the Cholesky factor Rk of Bk, which accounts for an O(n2) memory
requirement.

The limited-memory methods are designed for the situation where the amount
of available storage is not enough for BFGS, but exceeds the requirement for PCG.
The motivation is that by utilizing more memory than PCG, we expect to achieve
performance that is superior to PCG, though inferior to BFGS.

Both of the limited-memory methods we consider here have an input parameter
m, which specifies the number of stored vector pairs for the L-BFGS method and
the number of BFGS iterations for each invocation of the Quasi-Newton phase in
the VSCG algorithm.



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS13

6.1. The L-BFGS method. The L-BFGS method was developed by Nocedal [8]
based on the fact that we can construct HBFGS

k from H0 by applying k times the
updates with the vector pairs (yj , sj), j = 1, · · · , k. We can easily deduce this fact
from the recursive relation for in HBFGS

k (4.3).
Moreover, we need not compute HBFGS

k explicitly, but we instead compute Hkgk.
This can be accomplished by the two-loop recursion described by Nocedal (see [8],
and [9, Algorithm 9.1]).

In L-BFGS, we store the m most recent pairs of (yi, si). When the storage limit
is reached, we discard the oldest vector pair before saving the newest one, i.e., we
keep ((yk, sk), (yk−1, sk−1), · · · , (yk−m+1, sk−m+1)). For computing Hkgk, we use
the two-loop recursion. The two-loop recursion is based on the expression (4.2).
We can repeatedly apply (4.2) in the L-BFGS context and we have

(6.1)

HBFGS
k = (V T

k · · ·V T
k−m+1)H0

k(Vk−m+1 · · ·Vk)

+ ρk−m+1(V T
k · · ·V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · ·Vk)

+ ρk−m+2(V T
k · · ·V T

k−m+3)sk−m+2s
T
k−m+2(Vk−m+3 · · ·Vk)

· · ·
+ ρksks

T
k ,

which forms the basis of the two-loop recursion. The formal L-BFGS algorithm
that we have implemented can be found in [9, Algorithm 9.2].

PCG can be understood as a special case of BFGS, hence it is not surprising
that PCG can be interpreted as a special case of L-BFGS as well. Indeed, from
(3.9), we can reconstruct HCG

k from H0 by an update with (yk, sk). As a result, we
can interpret PCG as L-BFGS with m = 1 and H0

k = H0 (i.e. the initial matrix of
each Quasi-Newton phase is set to H0). By similar reasoning, we see that BFGS
is, in fact, L-BFGS with m =∞ and H0

k = H0.

6.2. The VSCG method. With the relationship between PCG and BFGS firmly
established, we are now ready to consider the VSCG method, which was proposed
by Buckley and LeNir [2]. The VSCG algorithm combines cycles of BFGS with
CG iterations in an intelligent manner. The basic reasoning is that the symmetric
positive definite Hk from BFGS approximates the inverse of the Hessian, which
is just A−1 if f(x) is the quadratic function in (1.2) So it is reasonable to apply
Hm, which is generated by m iterations of BFGS, as the preconditioner to CG so
as to improve the performance of CG. When the BFGS iterations are invoked is
determined by a CG restart criterion. Here, we present the basic algorithm for
VSCG.

Algorithm 6.1. VSCG
Initialization x0, g0 = ∇f(x0), d0 = −H0g0
while not converged

BFGS-part: Choose/reset initial matrix H0
k to be s.p.d. H0.

for i = 1, · · · ,m− 1,m

Hi = U(Hi−1, si, yi)
di = −Higi

xi+1 = xi + αidi



14 ZHIWEI (TONY) QIN

end (for)

CG-part: Continue from xm+1, use Hm as the preconditioner
for i = m+ 1,m+ 2, · · · until a restart is necessary

Hi = U(Hm, si, yi)
di = −Higi

xi+1 = xi + αidi

end (for)
end (while)

In VSCG, although m denotes the number of iterations allowed for each invo-
cation of the BFGS-part, it in fact carries the same meaning as that in L-BFGS.
Since the preconditioner Hm is constructed from the m (si, yi) pairs, we have to
store them for the CG-part. In other words, m is the number of vector pairs saved.

It turns out that VSCG is related to CG and BFGS in the same way as L-
BFGS. Intuitively, this is not surprising since the parameter m in both algorithms
represents the same thing. When m = 1, VSCG reduces to Beale’s recurrence
with padding [2]. (Recall that with exact line-search, padding does not affect the
search directions generated.) Now, Beale’s recurrence is in turn equivalent to PCG
on quadratic functions with exact line-search [2]. When m = ∞, obviously the
CG-part of VSCG will never be executed, hence VSCG is just BFGS.

On quadratic functions, as we have discussed in the previous section, PCG and
BFGS are equivalent. Therefore, it follows that L-BFGS and VSCG are also equiv-
alent to PCG and BFGS on quadratics. We will make that observation in the next
section.

The storage requirements for L-BFGS and VSCG are both O(mn) since both
algorithms require storing m n-vector pairs.

6.3. Implementation issues. One issue regarding the VSCG implementation
that is worth discussing is the way we store and discard the (yi, si) vector pairs.
The original approach adopted by Buckley and LeNir is to discard all m vector pairs
at the first step of each run of the BFGS part, i.e. resetting the preconditioner to
H0, and then start afresh. In the numerical results that we present in the next
section, we will use VSCG2 to represent the implementation with this approach.

We have also tried to adopt the L-BFGS strategy by discarding only the oldest
vector pair (and add in the newest one) at each restart of CG. Test experience
showed that this approach is almost the same as the original one. Intuitively, that
makes sense because after m BFGS iterations, all the m old vector pair would have
been discarded, and therefore their effect is the preconditioner Hm which is to be
applied to the CG-part. We will not show the numerical results for this approach.

In a personal communication, Friedlander suggested to keep the diagonal of Hm

before discarding all the m vector pairs at a new restart and then proceed as the
original approach with H0 being a diagonal matrix whose diagonal is that of the
previous Hm. The rationale behind is that the diagonal of Hm contains the most
information of the matrix. We represent the implementation with this strategy as
VSCG4.



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS15

VSCG requires a restart criterion for the CG-part of the algorithm. Buckley and
LeNir [2] proposed to use

(6.2) τ =
gT

i Hmgi−1

gT
i−1Hmgi−1

.

However, τ is always 0 on quadratic functions by (3.5), hence (6.2) is not applicable
to linear problems. In our implementation, we invoke the BFGS-part whenever the
number of iterations is a multiple of n.

In our VSCG implementation, we also use the L-BFGS two-loop recursion to
compute Hkgk for simplicity, although Buckley and LeNir [2] described a slightly
different way to do that.

Since the initial matrixH0 is usually diagonal, we simply use a vector to represent
H0 so that H0q is just the result of an element-wise multiplication of H0 and q. In
our implementations of all the algorithms under consideration, H0 is always set to
the identity matrix.

7. Numerical results

7.1. Explanation of set-up. Our implementations of the algorithms are in MAT-
LAB. The source code is available upon request. The algorithms are tested over
30 test matrices from Matrix Market [6], and their performances, i.e. number of
iterations for convergence, are reflected in the table and graphs. We classify the
test matrices by their condition numbers according to the following table:

category condition number
extremely ill-conditioned ≥ 1010

highly ill-conditioned 107 − 109

moderately ill-conditioned 104 − 106

well-conditioned ≤ 103

The information for the test matrices can be found in Appendix A or in the source
file loadTestMatrices.m.

The table of results is organized as follows: The first column contains the indices
of the test matrices. The second and last columns contain the results for PCG and
BFGS respectively. The remaining columns show the results for the limited-memory
methods with different values of m.

Each test matrix occupies three rows, which corresponds to L-BFGS, VSCG2,
and VSCG4 in that order. The results for PCG and BFGS are put in each row to
server as benchmarks.

The values of m are not set to specific numbers. Instead, percentages are used to
reflect the amount of storage allowed relative to the total size of the matrix. When
m is at 100%, it is set to the value l = min(n, 200). Similarly at 10%, for example,
m = l/10.

7.2. Table and graphs.

7.3. Observations. In the previous sections, we have established that PCG, BFGS,
L-BFGS, and VSCG are all equivalent on quadratic functions with exact line-search.
We can see from the numerical results that this is true provided that the matrix in
problem is well-conditioned (e.g. matrices 2,7 in Figure 1). So, PCG should be the
first choice for solving well-conditioned linear systems.



16 ZHIWEI (TONY) QIN

Figure 1. Performance graph for matrices 1-6, 11, and 12.



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS17

Figure 2. Performance graph for matrices 13-16, and 29-32.



18 ZHIWEI (TONY) QIN

Table 1. Numerical results

On ill-conditioned matrices, however, there is significant difference in the per-
formance of PCG and BFGS. The gap widens as the matrix becomes more ill-
conditioned and larger in size. The performance of the limited-memory methods



THE RELATIONSHIPS BETWEEN CG, BFGS, AND TWO LIMITED-MEMORY ALGORITHMS19

Figure 3. Performance graph for matrices 33-35.

resembles that in the nonlinear case; as the value of m increases, the number of
iterations decreases until it reaches the level of BFGS.

The number of iterations for L-BFGS with m = 1 is identical or close to PCG
as expected, but in many test cases (e.g. matrices 3,5 in Figure 1, and 29 in Figure
2), that is not true for VSCG2 and VSCG4. Here, we attempt to provide a possible
explanation. As we mentioned in the previous section, the equivalence of VSCG
with m = 1 and PCG on quadratic functions relies on the equivalence of Beale’s
recurrence and PCG. Buckley and LeNir [2] established the second equivalence by
showing that on quadratics,

(7.1) gT
i Hjyi = gT

i H0yi, j > 0, i > j

which reduces to

(7.2) Higi = H0gi, i > j

Here, Hjgi comes from PCG, and H0gi comes from Beale’s recurrence. We recall
that the equivalence of PCG and BFGS on quadratics is based on the same result
(5.2), but we just observed that PCG requires much more iterations than BFGS
does to reach convergence on ill-conditioned matrices. That should explain why
VSCG with m = 1 performs not as well as PCG. As such, if the linear system is
highly ill-conditioned and the amount of storage is very limited, we recommend
using L-BFGS to solve the problems.



20 ZHIWEI (TONY) QIN

It is worthwhile to note that when m reaches the 40% level, VSCG4 almost never
perform worse than L-BFGS, and in some cases (e.g. matrices 4,5 in Figure 1, and
34 in Figure 2), the superiority is significant. The performances of VSCG2 and
VSCG4 are generally identical, but VSCG4 shows superiority in several cases (e.g.
matrix 1,3 in Figure 1).

Our final observation is that BFGS shows the most robustness on very large
and extremely ill-conditioned matrices (e.g. matrix 20,30 in Figure 2). In those
cases, all the other three methods fail to converge within 5000 iterations, but BFGS
succeeds.

8. Conclusion

We have described PCG, BFGS, and the limited-memory methods in the context
of linear systems, and we have also streamlined the relationships between each of
the algorithms. The numerical results that we have presented demonstrate that
CG is the best choice for well-conditioned problems because of its low memory
requirement. On large, highly ill-conditioned problems, BFGS may be our only
choice. Nevertheless, on moderately ill-conditioned problems with moderate sizes,
we may be able to take advantage of the limited-memory algorithms, depending on
the amount of storage we have available.

References

[1] Buckley, A. “Extending the relationship between the conjugate gradient and BFGS algo-
rithms”, Mathematical Programming 15 (1978) 343-348.

[2] Buckley, A. AND LeNir, A. “QN-like variable storage conjugate gradients”, Mathematical

Programming 27 (1983) 155-175.
[3] Fletcher, R. AND Reeves, C.M. “Function minimization by conjugate gradients”, Computer

Journal 7 (1964) 149-154.

[4] Hager, W.W. “Updating the inverse of a matrix”, SIAM Review 31 (1989) 221-239.
[5] Hestenes, M.R. AND Stiefel, E. “Methods of conjugate gradients for solving linear systems”,

Journal of Research of the National Bureau of Standards 49 (1952) 409-436.

[6] Matrix Market, http://math.nist.gov/MatrixMarket/.
[7] Nazareth, L. “A relationship between the BFGS and conjugate gradient algorithms and its

implications for new algorithms”, SIAM Journal on Numerical Analysis 16 (1979) 794-800.

[8] Nocedal, J. “Updating Quasi-Newton matrices with limited storage”, Mathematics of Com-
putation 35 (1980) 773-782.

[9] Nocedal, J. AND Wright, S. “Numerical Optimization”, Springer-Verlag, New York, NY,
1999.

[10] Schoenberg, R. “Optimization with the Quasi-Newton method”, Aptech Systems, Maple

Valley, WA, 2001.
[11] Shanno, D.F. “Conjugate gradient methods with inexact searches”, Mathematics of Opera-

tions Research 3 (1978) 244-256.

Department of Mathematics,, University of British Columbia, BC Canada

E-mail address: tonyqin@interchange.ubc.ca

Sponsor: Michael P. Friedlander, Department of Mathematics,, University of British

Columbia, BC Canada
E-mail address: mpf@cs.ubc.ca


