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NOTE ON GABRIEL’S HORN

JOSEPH KRENICKY AND JAN RYCHTÁŘ

Abstract. A smooth bounded solid of finite volume and infinite surface is
constructed. It is a variant of the classical Gabriel’s horn that is often taught

in Calculus classes.

Gabriel’s horn, [ABD], is a classical example from Calculus. It is a solid with
finite volume and infinite surface obtained by rotating the graph of the function
f(x) = 1/x for x ≥ 1 about the x-axis. As it is taught in Calculus classes, the
object can be filled with paint but its surface cannot be painted.

The classical Gabriel’s horn is an unbounded object. In reality, as some students
point out ([L]), it cannot be filled with paint. Lynch [L] constructed a bounded
variant of Gabriel’s horn. He constructed such an object by rotating the graph of
a certain piecewise linear function defined on the interval [0, 1]. The graph of the
function had an infinite arclength; and thus this object could indeed be filled with
paint and yet its surface could not be painted.

In this note, Lynch’s example is modified to get a solid with a smooth surface.
The core of the construction is the following Theorem.

Theorem 1. There exists a bounded function f that is differentiable on a closed
interval [0, 0.5] and whose arclength is infinite. Moreover, f is infinitely many times
differentiable on (0, 0.5) and satisfies 1 ≤ f(x) ≤ 3 for all x ∈ [0, 0.5].

Proof. Define a function

f(x) =

2 +
x

lnx
sin

(
1
x

)
, x ∈ (0, 0.5],

2, x = 0.

To get a better idea about the function f(x), consider the function sin
(

1
x

)
whose

graph appears in Figure 1.
The function sin

(
1
x

)
oscillates between −1 and 1, and has an extremely small

period in the neighborhood of x = 0. The function f is nothing more than the
function sin

(
1
x

)
squeezed in between the function 2 + x

ln x and 2− x
ln x on the given

interval x ∈ [0, 0.5], see Figure 2.
Note that 1 ≤ f(x) ≤ 3.

First, we will establish the differentiability of the function f . Clearly, the function
is infinitely differentiable on (0, 0.5]. The function f is differentiable at x = 0 from
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Figure 1. Graph of sin
(

1
x

)
.
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Figure 2. Graph of f(x) = 2 + x
ln x sin

(
1
x

)
.

the right (and thus continuous at x = 0). Indeed,

f ′+(0) = lim
h→0+

f(0 + h)− f(0)
h

= lim
h→0+

sin
(

1
h

)
lnh

= 0,

where the last equality follows by the Squeezing Theorem (see [ABD]) because

−1
lnh

≤
sin

(
1
h

)
lnh

≤ 1
lnh

, and

lim
h→0+

±1
lnh

= 0

Hence, the function f is differentiable on [0, 0.5].

In order to establish that the arclength L of the graph of f is infinite we will be use
the following easy observation (whose proof is straightforward and it is omitted).

Fact 2. The function g(x) = 1/(x ln(x)) is a decreasing function on [2,∞) satis-
fying lim

x→∞
g(x) = 0.

Now, consider points

xk =
1

kπ + π/2
, k = 1, 2, . . . .
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For the arclength Lk of the graph between points xk and xk+1 we have the following
estimates

Lk ≥ |f(xk)− f(xk+1|

=
∣∣∣∣ − sin(kπ + π/2)
(kπ + π/2) ln(kπ + π/2)

− − sin((k + 1)π + π/2)
((k + 1)π + π/2) ln((k + 1)π + π/2)

∣∣∣∣
=

∣∣(−1)kg((kπ + π/2)− (−1)k+1g((k + 1)π + π/2)
∣∣

≥ 2g((k + 1)π + π/2)

≥ 2g((k + 2)π),

where we used (twice) the monotonicity of the function g. Hence, the arclength L
of the graph of f is at least

L ≥
∞∑

k=1

Lk ≥
∞∑

k=1

2g((k + 2)π) =
∞∑

k=1

2
(k + 2)π ln((k + 2)π)

.

The series diverges by the limit comparison test (see [ABD]) with the series
∞∑

k=3

1
k ln k

where the later series diverges by the integral criteria because g is a strictly de-
creasing function and∫ ∞

2

1
x lnx

dx
substitution=
u = ln x

du = 1
x
dx

∫ ∞

ln 2

1
u

du = ∞.

Thus, the arclength L of the graph of f is infinite.

Corollary 3. There exists a bounded smooth solid with finite volume and infinite
surface.

Proof. Consider the solid given by rotating the graph of f (given in the above
Theorem) about the x-axis. The volume of the solid is finite. Indeed,

f(x) ≤ 3

and thus the solid is contained in a cylinder of radius 3 and height 0.5. It remains
to show that the surface S of the solid is infinite. This is done by the following
estimate, where we used the inequality f ≥ 1.

S =
∫ 0.5

0

2πf(x)
√

1 + f ′(x)2dx ≥ 2π

∫ 0.5

0

√
1 + f ′(x)2dx = 2πL = ∞.

Remark. Note, as already observed in Lynch’s paper [L], that the solid could not
be constructed by using a function h : [a, b] 7→ R with a continuous derivative.
Indeed, we would have

S =
∫ b

a

2πh(x)
√

1 + h′(x)2dx ≤ (b− a)2πM
√

1 + D2 < ∞,
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where

M = max{h(x), x ∈ [a, b]},
D = max{|h′(x)|, x ∈ [a, b]},

with both M and D being finite by the continuity of h and h′.
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