
Furman University
Electronic Journal of Undergraduate Mathematics
Volume 9, 36 – 43, 2004

PROPERTIES OF THE ITERATES OF THE WEIERSTRASS-℘
FUNCTION

WALTER H. CHEN AND MICHAEL S. WILLIS

Abstract. This paper discusses several properties of the Weierstrass-℘ func-

tion, as defined on the fundamental parallelogram C/Γ, where C is the complex

plane and Γ is the lattice generated by ω1 and ω2. Using the addition formula
for ℘(z1 + z2), we develop a reccurence relation for ℘(nz) in terms of ℘(z).

We then examine the degree of this expression, some coefficients, and patterns
concerning the poles of this function. We also consider the geometric interpre-

tation of taking an arbitrary z0 and adding it to itself, both in the fundamental

parallelogram C/Γ and the elliptic curve generated by ℘(z) and ℘′(z).

1. Introduction

Elliptic functions are single-valued, doubly-periodtic meromorphic functions of
a complex variable that are inverses of elliptic integrals. Elliptic functions satisfy
many nonlinear differential equations arising in mathematical physics and, there-
fore, are useful in applications.

Every person who knows trionometry will agree that the periodicity property

(1.1) sin(x + 2kπ) = sin x and cos(x + 2kπ) = cos x,∀x ∈ C, k ∈ Z
is of fundamental importance in all scientific calculations. An elliptic function f
satisfies

(1.2) f(z + mω1 + nω2) = f(z),∀z ∈ C,∀m,n ∈ Z
for a pair of primative periods ω1 and ω2. Thus (1.2) can be viewed as a general-
ization of (1.1). We also recall the angle-addition formulas

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1,

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

∀θ1, θ2 ∈ R
Such formulas lead to great simplifications in calculations. Elliptic functions

satisfy certain properties of a similar nature. But they involve derivatives, cf. (3.1)
below.

There are two “simple” types of elliptic functions: Jacobian elliptic functions
and Weierstrass elliptic functions, which are classified according to the order of
poles. Properties of such elliptic functions may be found in [3].
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Let ℘ be a Weierstrass-℘ elliptic function. In this paper, we are primarily inter-
ested in deriving the recurrence formula for ℘(nz), for any z ∈ C and n = 1, 2, ....
Such a formula may be likened to the multiple-angle formula

sin(nθ) =

{
n cos θ[sin θ − (n2−22)

3! sin3 θ + (n2−22)(n2−42)
5! sin5 θ ± ...]; for n even, n > 0

n sin θ − n(n2−12

3! sin3 θ + n(n2−12)(n2−32)
5! sin5 θ ± ... for n odd, n > 0

(Note that the above sums terminate after finitely many terms.) But we could
not find the formula for ℘(nz) in [3] or other references. This motivated us to write
this article.

The orginization of the paper is as follows: In section 2, we provide some prelim-
inary material. In section 3, we derive the recurrence formula for ℘(nz) and some
associated properties.

2. Preliminaries

2.1. Chebyshev Polynomials. Some nice properties of the Chebyshev Polynomi-
als help us derive a recurrence relation for ℘(nz) and certain associated properties
of the resulting explicit rational function. A good reference for Chebyshev Polyno-
mials may be found in [2].

Definition 2.1. The Chebyshev Polynomial of the first-kind, Tn(x), is a polyno-
mial in x of degree n defined by:

(2.1) cos(nθ) = Tn(x) where x = cos θ.

An example of a neat property of Chebyshev Polynomials is given by the follow-
ing theorem.

Theorem 2.2. The fundamental recurrence relation that generates all of the poly-
nomials Tn(x) is as follows:

(2.2) Tn(x) = 2xTn−1(x)− Tn−2(x), for n = 2, 3, ...

with initial conditions

(2.3) T0(x) = 1 and T1(x) = x.

2.2. Weierstrass-℘ Function. This investigation is natural because the Weierstrass-
℘ Function shares some properties with the aforementioned trigonometric functions,
such as periodicity odd/even characteristics. The Weierstrass-℘ Function is given
as follows. Additional information can be found in [1].

Definition 2.3. Let points ω1, ω2 ∈ C be non-colinear with 0 on the complex
plane. Define the lattice Γ as all points of the form

(2.4) ω ∈ Γ⇐⇒ ω = aω1 + bω2 ∀a, b ∈ Z.

The Weierstrass-℘ function is defined as:

(2.5) ℘(z) =
1
z2

+
∑

ω∈Γ,ω 6=0

(
1

z − ω
− 1

ω2

)
, ∀z ∈ C.

Remark 2.4. Note that ℘(z) is even, and more importantly, that ℘(z) is double
periodic, with periods of ω1 and ω2, i.e.,

(2.6) ℘(z + ω1) = ℘(z + ω2) = ℘(z) ∀z ∈ C.
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Because of this, we may examine ℘(z) on a fundamental parallelogram C/Γ
defined by ω1 and ω2. Note that ℘(z) contains its only poles at lattice points, and
these are poles of order two.

Theorem 2.5. Using power series expansions and pole/zero comparisons, we have

(2.7) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

where

(2.8) g2 = 60
∑

ω∈Γ,ω 6=0

1
ω4

and g3 = 140
∑

ω∈Γ,ω 6=0

1
ω6

,

and

(2.9) ℘′(z) =
−2
z3

+ 6
∑

ω∈Γ,ω 6=0

1
ω4

z + 20
∑

ω∈Γ,ω 6=0

1
ω6

z3.

Remark 2.6. From here we see that ℘′(z) is also double-periodic on the fundamental
lattice lattice, and that it is odd. Because of this, we see that the half-periods must
be zeroes of ℘′(z). In our fundamental parallelorgram, we have

(2.10) ℘′
(ω2

2

)
= ℘′

(ω2

2

)
= ℘′

(
ω1 + ω2

2

)
= 0.

We also see that the points (℘(z), ℘′(z)) lie on the curve y2 = 4x3 − g2x − g3.
This is an elliptic curve with roots at x = ℘(ω1

2 ), ℘(ω2
2 ), ℘(ω1+ω2

2 ).
Using the relationship between ℘(z) and this curve, we can now begin to derive

a recurrence relation.

3. Recurrence Relation for ℘(nz) and its Derivation

Theorem 3.1. For z1, z2 ∈ C,

(3.1) ℘(z1 + z2) = −℘(z1)− ℘(z2) +
1
4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

.

If z1 ≡ z2 mod Γ, the limit as z2 → z1 gives

(3.2) ℘(2z1) = −2℘(z1) +
1
4

(
℘′′(z1)
℘′(z1)

)2

.

Its proof may be found in [1] and we omit it. Now we can give a recurrence
relation for ℘(nz) in the following.

Theorem 3.2. If n is even, we have

(3.3) ℘(nz) = −2℘(
z

2
) +

1
4

(
℘′′( z

2 )
℘′( z

2 )

)2

,

and for n odd we have

(3.4) ℘(z + (n− 1)z) = −℘(z)− ℘((n− 1)z) +
1
4

(
℘′(z)− ℘′((n− 1)z)
℘(z)− ℘((n− 1)z)

)2

.

Note: its proof is available in [1].

Theorem 3.3. We have

(3.5) ℘(nz) = Pn(℘(z)) =
1
n2

+ Rn(℘(z)),

where Rn is some rational function of ℘(z) with degree less than 0, ∀n ∈ Z
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Proof. We write the power series expansion for ℘(z) at the origin:

(3.6) ℘(z) =
1
z2

+ 3
∑

ω∈Γ,ω 6=0

1
ω4

z2 + 5
∑

ω∈Γ,ω 6=0

1
ω6

z4 + ...,

so

(3.7) ℘(nz) =
1

n2z2
+ 3

∑
ω∈Γ,ω 6=0

1
ω4

n2z2 + 5
∑

ω∈Γ,ω 6=0

1
ω6

n4z4 + ...

Define

(3.8) Hn(z) = 3
∑

ω∈Γ,ω 6=0

1
ω4

n2z2 + 5
∑

ω∈Γ,ω 6=0

1
ω6

n4z4 + ...,

thus

(3.9) ℘(nz) =
1

n2z2
+ Hn(z).

Note that as z → 0, Hn(z) → 0 as well. We also know that ℘(nz) = Pn(℘(z)).
Substitute in our expansion

(3.10) ℘(nz) = Pn

(
1
z2

+ H1(z)
)

.

Since Pn(x) is some rational function of x, define P̃n(x) as the quotient with no
term of degree less than 0, and Rn(x) as the remainder of degree less than 0, we
thus obtain

℘(nz) = Pn

(
1
z2

+ H1(z)
)

= P̃n

(
1
z2

+ H1(z)
)

+ Rn

(
1
z2

+ H1(z)
)

=
1

n2z2
+ Hn(z).

(3.11)

First note that as z → 0, ( 1
z2 + H1(z)) → ∞. But since deg Rn < 0, Rn( 1

z2 +
H1(z))→ 0, so Rn will not contribute to the 1

z2 term. As for the P̃n term,

(3.12) P̃n

(
1
z2

+ H1(z)
)

= a0 + a1

(
1
z2

+ H1(z)
)

+ a2

(
1
z2

+ H1(z)
)2

+ ...

Because Rn does not contribute in the 1
z2 term, we see that a1 = 1

n2 , and because
the expression for ℘(nz) contains no constant terms and no terms of degree less
than 2, we see that a0 = a2 = a3 = 0, so,

Pn(℘(z)) = P̃n(℘(z)) + Rn(℘(z))

=
1
n2

℘(z) + Rn(℘(z)).
(3.13)

Remark 3.4. From this we see that the rational function Pn(℘(z)) is always of
degree 1.

Lemma 3.5. z0 is a pole of ℘(nz) if and only if nz0 ∈ Γ, or nz0 = aω1 + bω2 so
z0 = aω1+bω2

n for some a, b ∈ Z.

Theorem 3.6. ℘(nz) = Pn(℘(z)) contains n2 roots.
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Figure 1. Grid Point Visualization

Proof. In the above lemma, clearly both a and b can take any integer value from 0
to n− 1, so there are n2 poles of ℘(nz).

But as ℘(nz) = Pn(℘(z)), then if a point z0 is a pole of ℘(nz), ℘(z0) must be a
pole of Pn(℘(z)), which means that ℘(z0) is a root of the denominator of the rational
function Pn(℘(z)). The one exception is the point z0 = 0, because ℘(0) =∞, which
is not the root of any polynomial. Since ℘(z) is well defined everywhere but on the
lattice points, this means that the denominator of Pn(℘(z)) must have n2−1 roots,
or must be of degree n2 − 1. We proved earlier that deg Pn = 1, so the numerator
of Pn(℘(z)) must be of degree n2, so ℘(nz) = Pn(℘(z)) contains n2 roots.

The grid point illustration in Figure 1 provides us with more information. First,
it is easy to see that if n is composite, ℘(nz) shares grid-point poles with ℘(miz)
where mi are the factors of n. Our ℘(4z) examples illustrates this easily; the
halfway points are clearly also poles of ℘(2z). For our polynomial Pn(℘(z)), this
means that the denominator of Pn(℘(z)) contains all the factors in the denominator
of Pmi(℘(z)).

We also know that ℘(z) is even. On our grid this introduces a rotational sym-
metry about the center, where pairs of points yield the same value. In our ℘(z)
example, ℘( 3ω1+ω2

4 ) = ℘(− 3ω1+ω2
4 ) = ℘(ω1+3ω2

4 )
For the rational function Pn(℘(z)), because two different grid points z0 and −z0

have the same value ℘(z0), this means that the value of ℘(z0) must be a double
pole of the function Pn(℘(z)). Thus, the denominator of the function factors into
squared terms. The only exceptions to this are the halfway points ωi

2 , where i =
1, 2, 3 and ω3 = ω1 + ω2. It is clear that ωi

2 and −ωi

2 are the same grid point, and
so the value ℘(ωi

2 ) is only a single pole of Pn(℘(z)). This may seem to contradict
the fact that if ωi

2 is on our grid, then it is a double pole of ℘(nz). The reason that
this is not a contradiction comes from the fact that ℘′(ωi

2 ) = 0, as illustrated in the
proof below.

Theorem 3.7. If n is even, the halfway points ωi

2 are simple poles of Pn(℘(z)), or
equivalently,

(3.14) lim
z→ωi

2

Pn(℘(z))(℘(z)− ℘(
ωi

2
)) = c, for some c 6= 0.

Proof. We know that if n is even, ωi

2 is a double pole of ℘(nz), so we can expand
as follows.

(3.15) Pn(℘(z)) = ℘(nz) =
a−2

(nz − nωi

2 )2
+

a−1

nz − nωi

2

+
∞∑

k=0

ak(nz − n
ωi

2
)k,
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hence

lim
z→ωi

2

Pn(℘(z))(℘(z)− ℘(
ωi

2
) = lim

z→ωi
2

a−2(℘(z)− ℘(ωi

2 ))
n2(z − ωi

2 )
+

a−1(℘(z)− ℘(ωi

2 ))
n(z − ωi

2 )

+(℘(z)− ℘(
ωi

2
)
∞∑

k=0

ak(nz − n
ωi

2
)k.

(3.16)

The terms of the sum go to zero, and we may use the L’Hospital’s Rule on the
rational terms

(3.17) = lim
z→ωi

2

a−2℘
′(z)

2n2(z − ωi

2 )
+

a−1℘
′(z)

n
.

Because ℘′(ωi

2 ) = 0, the term on the right is 0, and we use the L’Hopital’s Rule
again on the term on the left,

(3.18) = lim
z→ωi

2

a−2℘
′′(z)

2n2
=

a−2℘
′′(ωi

2 )
2n2

6= 0.

Theorem 3.8. Any collection of distinct Pi(℘(z))’s are linearly independent.

Proof. Note that if a grid point z0 is not a halfway point ωi

2 , then ℘′(z0) is not zero
and we can use a similar grid argument as before to show that ℘(z0) is a double
pole of Pn(℘(z)). Furthermore because every distinct n gives at least some different
grid points, we see that Pn(℘(z)) must have different poles, and so for distinct ni’s,
the Pni(℘(z))’s are linearly independent.

We now establish the main result of the paper.

Theorem 3.9. In the expansion of Pn(℘(z)) into a sum of partial fractions,

(3.19) Pn(℘(z)) =
c−2

(℘(z)− ℘(z0))2
+

c−1

℘(z)− ℘(z0)
+ R0(℘(z)),

where R0(℘(z)) is some rational function, if z0 is a pole, such that z0 6= 0, ωi

2 , then

(3.20) c−2 =
℘′(z0)2

n2
and c−1 =

℘′′(z0)
n2

.

Proof. From the definition of ℘(nz), we see that

(3.21) ℘(nz) =
1

n2(z − z0)2
− 1

n2z2
0

+
∑

ω∈Γ,ω 6=0,nz0

(
1

(nz − ω)2
− 1

ω2

)
.

Now, we set Pn(℘(z)) and ℘(nz) equal to each other, and multiply the resulting
expression by (z − z0)2

c−2

(℘(z)−℘(z0))2

(z−z0)2

+
(z − z0)c−1

℘(z)−℘(z0)
z−z0

+ (z − z0)2R0(℘(z)) =
1
n2

−(z − z0)2

 1
n2z2

− 1
n2z2

0

+
∑

ω∈Γ,ω 6=0,nz0

(
1

(nz − ω)2
− 1

ω2

) .

(3.22)
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Taking the limit as z → z0 gives

(3.23)
c−2

℘′(z0)2
=

1
n2

.

So our result for c−2 follows.
Now, we attempt to find c−1. Again, we set Pn(℘(z)) = ℘(nz), but this time we

multiply through the expression by (z − z0) to get

c−2

(℘(z)−℘(z0))2

z−z0

+
c−1

℘(z)−℘(z0)
z−z0

+ (z − z0)R0(℘(z)) =
1

n2(z − z0)

+(z − z0)

 1
n2z2

− 1
n2z2

0

+
∑

ω∈Γ,ω 6=0,nz0

(
1

(nz − ω)2
− 1

ω2

) .

(3.24)

Rearranging terms and substituting for c−2 gives

c−1

℘(z)−℘(z0)
z−z0

+ (z − z0)R0(℘(z)) =
1

n2(z − z0)
− ℘′(z0)2

n2(℘(z)−℘(z0))2

z−z0

+(z − z0)

 1
n2z2

− 1
n2z2

0

+
∑

ω∈Γ,ω 6=0,nz0

(
1

(nz − ω)2
− 1

ω2

) .

(3.25)

Taking the limit as z → z0 yields

(3.26)
c−1

℘′(z0)
=

1
n2

lim
z→z0

(
1

z − z0
− ℘′(z0)2

(℘(z)−℘(z0))2

z−z0

)
.

Because z0 6= 0, we can substitute the Taylor series expansion for ℘(z)

(3.27) ℘(z) = ℘(z0) + ℘′(z0)(z − z0) +
℘′′(z0)

2!
(z − z0)2 + ...

into our expression, giving

n2c−1

℘′(z0)
= lim

z→z0

 1
z − z0

− ℘′(z0)2

(℘(z0)+℘′(z0)(z−z0)+
℘′′(z0)

2! (z−z0)2+...−℘(z0))2

z−z0


= lim

z→z0

 1
z − z0

− ℘′(z0)2

((z−z0)(℘′(z0)+
℘′′(z0)

2! (z−z0)+...))2

z−z0


= lim

z→z0

(
(℘′(z0) + ℘′′(z0)

2! (z − z0) + ...)2 − ℘′(z0)2

(z − z0)(℘′(z0) + ℘′′(z0)
2! (z − z0) + ...)2

)

= lim
z→z0

(
℘′(z0)2 + 2(z − z0)℘′(z0)

℘′′(z0)
2! + ...− ℘′(z0)2

(z − z0)(℘′(z0) + ℘′(z0)
2! (z − z0) + ...)2

)

= lim
z→z0

(
℘′(z0)℘′′(z0) + ...

(℘(z0) + ℘′′(z0)
2! (z − z0) + ...)2

)

=
℘′(z0)℘′′(z0)

℘′(z0)2
.
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