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SOME GEOMETRY OF H(Rn)

CHRISTOPHER FRAYER

Abstract. If X is a complete metric space, the collection of all non-empty
compact subsets of X forms a complete metric space (H(X), h), where h is
the Hausdorff metric. In this paper we explore some of the geometry of the
space H(Rn). Specifically, we concentrate on understanding lines in H(R).
In particular, we show that for any two points A, B ∈ H(Rn), there exist

infinitely many points on the line joining A and B. We characterize some
points on the lines formed using closed and bounded intervals of R and show
that two distinct lines in H(R) can intersect in infinitely many points.

1. Introduction

Euclidean geometry has, as part of its structure, dimensionless points. With
these points and the use of the Euclidean distance we can construct circles, lines,
and much more. However, what happens if we broaden the points to special sets
and use a different metric to measure the distance between sets? Can we still
visualize lines and think of them in the same way?

In this paper we broaden the idea of dimensionless points to non-empty compact
sets, and use the Hausdorff metric to measure distances between sets. The space
(Rn, d), where d is the Euclidean metric, is a complete metric space. Therefore,
the collection of all non-empty compact subsets of Rn forms a complete metric
space (H(Rn), h), where h is the Hausdorff metric. A 2002 paper completely char-
acterized circles in H(Rn), as well as investigating the behavior of lines in H(R2)
[6]. This paper will study some geometry of the space H(Rn). Specifically, we will
concentrate on understanding lines in H(R).

2. H(Rn) and Distance

This section will define and explore a metric for the space H(Rn). Since H(Rn)
is the set of all non-empty compact subsets of Rn, we must first understand what
the non-empty compact subsets of Rn look like. Compactness in Rn is described
by the Heine-Borel theorem.

Heine-Borel Theorem. A subset A of Rn is compact if and only if A is closed
and bounded.

A proof of this theorem, along with a discussion of compactness, can be found
in [3]. An example of a compact subset of the real line is the closed interval [0, 6].
However, not all non-empty compact subsets of R are so nice. For example, the
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Cantor middle third set is a non-empty compact subset of R [3]. Two examples of
non compact subsets of R are [0,∞) and (2, 5).

We define a metric for H(Rn), called the Hausdorff distance.

Definition 1. Let (Rn, d′) be a complete metric space, where d′ is the Euclidean
metric and A,B ∈ H(Rn).

• If x ∈ Rn, the “distance” from the point x to the set B is

d(x,B) = min
b∈B

{d′(x, b)}

• The “distance” from the set A to the set B is

d(A,B) = max
x∈A

{d(x,B)}

• The Hausdorff distance between sets A and B is

h(A,B) = max{d(A,B), d(B,A)}.

Let’s look at some examples. Let B = {b1, b2} be a two element subset of H(R2).
Figure 1 shows an example where d(x,B) = l. In Figure 2, letting A ∈ H(R2) be
the grey shaded disk we have an example where d(A,B) = r.
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Figure 1: d(x, B) = l.

In general, to find the distance between A and B, find the element x′ ∈ A such that
d(x′, B) ≥ d(x,B) for all x ∈ A. Then find the element b′ ∈ B such that d(x′, b′) ≤ d(x′, b)
for all b ∈ B. Then d(x′, b′) = d(A,B). So we see that two sets A and B are within r
units of each other if every point of A is within r units of some point of B. Note that the
compactness of A and B guarantees the existence of the elements x′ ∈ A and b′ ∈ B.

It turns out that d(A, B) is not a metric for Rn. In Figure 2 we have an example where
d(A,B) = r, but d(B, A) > r. However, the Hausdorff distance is a metric for H(Rn).
Actually, (H(Rn), h) is a complete metric space [1]. The space (H(Rn), h) is the natural
environment in which to study fractals.
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Figure 1. d(x, B) = l.

Figure 2. d(A, B) = r and d(B, A) > r
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In general, to find the distance between A and B, find the element x′ ∈ A such
that d(x′, B) ≥ d(x,B) for all x ∈ A. Then find the element b′ ∈ B such that
d(x′, b′) ≤ d(x′, b) for all b ∈ B. Then d(x′, b′) = d(A,B). So we see that two sets
A and B are within r units of each other if every point of A is within r units of
some point of B. Note that the compactness of A and B guarantees the existence
of the elements x′ ∈ A and b′ ∈ B.

It turns out that d(A,B) is not a metric for Rn. In Figure 2 we have an example
where d(A,B) = r, but d(B,A) > r. However, the Hausdorff distance is a metric for
H(Rn). Actually, (H(Rn), h) is a complete metric space [1]. The space (H(Rn), h)
is the natural environment in which to study fractals.

3. Lines in H(Rn)

In this section we define lines in H(Rn). Lines in Rn can be defined using the
triangle equality. Given two points in Rn we know that we can find infinitely many
points in Rn that satisfy each version of the triangle equality. That is, for any
a, b ∈ Rn we can find infinitely many c ∈ Rn satisfying d(a, b) = d(a, c) + d(c, b),
d(a, c) = d(a, b) + d(b, c), and d(c, b) = d(c, a) + d(a, b) (where d represents the
Euclidean distance). Our goal is to extend this idea into H(Rn). Instead of using
the Euclidean metric, we will use the Hausdorff metric to measure distances between
sets. The question that we will investigate is, given A,B ∈ H(Rn) such that A 6= B,
can we find infinitely many C ∈ H(Rn) that satisfy each version of the triangle
equality. That is, can we find infinitely many C ∈ H(Rn) satisfying each of the
following equations:

h(A,B) = h(A,C) + h(C,B),

h(A,C) = h(A,B) + h(B,C),

h(C,B) = h(C,A) + h(A,B).

For A,B ∈ H(Rn) we say that C ∈ H(Rn) is on the line joining A and B if A,
B, and C satisfy one version of the triangle equality. We call the line joining two
subsets of H(Rn) a Hausdorff line.

Consider the subspace of H(Rn) containing all the one element subsets of Rn.
Within this set, the Hausdorff line joining A = {a} and B = {b} will contain
exactly the one-point sets corresponding to points in Rn lying on the Euclidean
line connecting a and b. Therefore, we see that Euclidean lines are embedded
within H(Rn). Theorem 1 shows that the Hausdorff line through two one point
subsets of Rn contain more than just the Euclidean points on the line connecting
a and b.

Theorem 1. The line connecting two one point subsets of H(Rn) contains more
than just the Euclidean points that lie on the line connecting the two points.

Proof. Without loss of generality let A = {a} and B = {b} where a, b ∈ Rn, and
note that A,B ∈ H(Rn). Assume that h(A,B) = r. Then d(a, b) = d(b, a) = r.
Now, construct the Euclidean ray from the point a to the point b,

−→
ab = {a + t(b− a) : t ≥ 0}.

Then, find two points on the Euclidean ray, c and e such that d(a, c) = 2r and
d(a, e) = 3r, where c and e are points in Rn. We let

C = ce = {tc + (1− t)e : 0 ≤ t ≤ 1} ∈ H(Rn).
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Then, d(C,A) = d(e, a) = 3r and d(A,C) = d(a, c) = 2r. Therefore h(A,C) = 3r.
Also, d(C,B) = d(e, b) = 2r and d(B,C) = d(b, c) = r. This tells us that h(B,C) =
2r. Therefore h(A,C) = h(A,B) + h(B,C), and C is on the line joining A and B.
Thus, the line connecting two one point subsets of H(Rn) contains more than just
the Euclidean points that lie on the line connecting the two points.

Theorem 1 shows us that (H(Rn), h) gives us a richer framework in which to
study lines. We will illustrate Theorem 1 with an example on the real line. We
let A = {1}, B = {3}, and C = [5, 7]. See Figure 3. We see that h(A,C) =
h(A,B) + h(B,C) and C is on the line connecting two one point subsets of H(R).
Letting C = [5, 5 + k] for k ∈ R with k > 0 shows us an example where there are
infinitely many C ∈ H(R) on the Hausdorff line joining A and B, but not on the
Euclidean line joining A and B.

Figure 3. The space (H(Rn), h) gives us a richer framework in which to study lines.

Next we consider lines formed using closed and bounded intervals of R.

Theorem 2. For any two closed and bounded intervals A,B ∈ H(R) we can find
infinitely many C ∈ H(R) that satisfy each version of the triangle equality.

Proof. Let A,B ∈ H(R) such that A and B are both closed and bounded intervals
of R. We let A = [a1, a2] and B = [b1, b2]. We will assume that h(A,B) = r. We
must consider three cases:

1. A ⊆ B,
2. A ∩B 6= ∅, B * A and A * B,
3. A ∩B = ∅.
For each case we must construct infinitely many C ∈ H(R) that satisfy each

version of the triangle equality. So there are a total of nine subcases that we must
prove.

When A ⊆ B we show that there exist infinitely many C ∈ H(R) such that
h(A,B) = h(A,C)+h(C,B). Since h(A,B) = r and A ⊆ B, we see that d(A,B) =
0 and d(B,A) = r. Therefore d(b2, a2) = r or d(b1, a1) = r. We let d(b2, a2) = r,
and d(b1, a1) ≤ r. The case where d(b1, a1) = r, and d(b2, a2) ≤ r is similar. We
choose k ∈ R with k ≥ 2. Let c1 = a1 −

(d(b1,a1)
k

)
, c2 = a2 + r

k , and C = [c1, c2] ∈
H(R). See Figure 4. We see that d(a1, c1) ≤ r

k and d(c1, b1) ≤ (k−1)r
k . Thus

h(A,C) = d(C,A) = d(c2, a2) =
r

k
and h(C,B) = d(B,C) = d(b2, c2) =

(k − 1)r
k

.

Therefore we have that h(A,B) = h(A,C) + h(C,B). So for any k ∈ R with k ≥ 2
there exists a C ∈ H(R) such that h(A,B) = h(A,C)+h(C,B). Thus, there exists
infinitely many C ∈ H(R) such that h(A,B) = h(A,C) + h(C,B).

The other eight subcases have a similar construction. We leave them to the
reader. Therefore, for any two closed and bounded intervals A,B ∈ H(R) we can
find infinitely many C ∈ H(R) that satisfy each version of the triangle equality.
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Figure 4. Infinitely many C ∈ H(R) such that h(A, B) = h(A, C) + h(C, B).

We have now characterized some points on the lines joining closed and bounded
intervals of H(R). However, we know that H(R) contains many different kinds of
sets. A closed and bounded interval is just one type of set in H(R). We are now
ready to move on to the more general case of lines in H(R).

3.1. Miscellaneous Results. Before we study lines in general we will look at
several miscellaneous results.

Lemma 1. Let A,B ∈ H(R) such that A 6= B and h(A,B) = r. Let C be a finite
subset of R such that d(A,C) ≤ r

2 and d(B,C) ≤ r
2 . If d(C,A) > r

2 or d(C,B) > r
2 ,

then by adding and subtracting a finite number of points to C we can construct a
new set C such that h(A,C) ≤ r

2 , and h(B,C) ≤ r
2 .

For an illustration of sets A, B, and C satisfying the hypothesis of Lemma 1, see
Figure 5. Here we let A = [−3,−2]∪ [2, 3], B = [−1, 1], and C = {− 5

2 , 0, 5
2}. It can

be easily verified that h(A,B) = r = 2, d(A,C) = 1
2 ≤

r
2 = 1, and d(B,C) = 1 ≤ r

2 .
We also see that d(C,A) = 2 and d(C,B) = 3

2 . Throughout the proof of lemma
1 we will use this example to illustrate the construction of a new set C such that
h(A,C) ≤ 1, and h(B,C) ≤ 1.

Figure 5. An illustration of sets A, B, and C which satisfy the hypothesis of
Lemma 1.

Proof. Let A,B ∈ H(R) such that A 6= B, and h(A,B) = r. Let C be a finite
subset of R such that d(A,C) ≤ r

2 and d(B,C) ≤ r
2 . Let H = {c ∈ C : d(c, A) >

r
2 and d(c,B) > r

2} and C0 = C − H. (In our example H = ∅.) If d(C0, B) ≤ r
2

and d(C0, A) ≤ r
2 , then let C = C0. If not, suppose d(C0, B) > r

2 . Then there
exists c ∈ C0 such that d(c,B) = d(C0, B) > r

2 . Then d(c, b) > r
2 for all b ∈ B. So

B∩[c− r
2 , c+ r

2 ] = ∅. (In our example, d(− 5
2 , B) > r

2 and we see that B∩[− 7
2 ,− 3

2 ] =
∅.) Since h(A,B) = r, for any a ∈ A ∩ [c− r

2 , c + r
2 ] there exists ba ∈ B such that

d(a, ba) ≤ r. Note that c ∈ C0, so A ∩ [c− r
2 , c + r

2 ] 6= ∅.
For each a ∈ A ∩ [c − r

2 , c + r
2 ], either ba > c + r

2 or ba < c − r
2 . If for some

a ∈ A ∩
[
c− r

2 , c + r
2

]
, there is a ba > c + r

2 , let bM = min{B ∩
[
c + r

2 ,max(B)
]
}.

Likewise, if for some a ∈ A ∩
[
c− r

2 , c + r
2

]
, there is a ba < c − r

2 , let bm =
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max{B∩
[
min(B), c− r

2

]
}. (Note, B is compact so bm and bM will be in B.) Then,

if bM exists, let

D = {a ∈ A ∩
[
c− r

2
, c +

r

2

]
: d(a, bM ) ≤ r

2
}.

Let l = inf(D) and set c1 = l + r
2 . (In our example bM = −1, D = [−3,−2] and

c1 = −3 + 1 = −2.) We will now show l ∈ D. Since A ∩
[
c− r

2 , c + r
2

]
is closed,

l ∈ A ∩
[
c− r

2 , c + r
2

]
. Construct a sequence {xn} in D so that xn ∈

(
l, l + 1

n

)
for

each positive integer n. Then,

d(l, bM ) ≤ d(l, xn) + d(xn, bM ) ≤ 1
n

+ r

is true for each positive integer n, so d(l, bM ) ≤ r and l ∈ D. If bm exists, let

D0 = {a ∈ A ∩
[
c− r

2
, c +

r

2

]
: d(a, bm) ≤ r

2
}.

Let l0 = sup(D0) and set c2 = l0− r
2 . (In our example bm does not exist.) A similar

argument, as used above to show l ∈ D, shows that l0 ∈ D0. If ba > c + r
2 does not

exist let c1 = c and if ba < c− r
2 does not exist let c2 = c. (In our example c1 = −2

and c2 = c = − 5
2 .) Let K = {c1, c2} and C1 = (C0 ∪K) − {c}. (In our example,

C1 = {−2, 0, 5
2}.)

We will now show d(A,C1) ≤ r
2 . Consider a ∈ A∩ [c− r

2 , c + r
2 ]. Then a ∈ D or

a ∈ D0. If a ∈ D, then d(a, c1) ≤ r
2 and if a ∈ D0, then d(a, c2) ≤ r

2 . Therefore,
d(A ∩ [c − r

2 , c + r
2 ], C1) ≤ r

2 , so d(A,C1) ≤ r
2 . We now show d(C1 ∩ K, A) ≤ r

2
and d(C1 ∩ K, B) ≤ r

2 . If c1 ∈ C1, then, since c1 = l + r
2 and l ∈ A, we know

that d(c1, A) ≤ r
2 . Also, since l ∈ D, we have that d(l, bM ) < r. Therefore, we see

that d(c1, B) ≤ r
2 . A similar argument holds if c2 ∈ C1. Therefore, we have that

d(C1 ∩K, A) ≤ r
2 and d(C1 ∩K, B) ≤ r

2 .
If there exists c ∈ C1 such that d(c,B) = d(C1, B) > r

2 , then d(c, b) > r
2 for all

b ∈ B. So B ∩ [c− r
2 , c+ r

2 ] = ∅. Use the same construction as above to construct a
new set C2 = (C1∪K)−{c}. (This step is necessary in our example. We have that
B ∩ [ 32 , 7

2 ] = ∅. Our new set is C2 = {−2, 0, 2}.) After doing this at most a finite
number of times we will have a set Cn such that d(A,Cn) ≤ r

2 , d(B,Cn) ≤ r
2 , and

d(Cn, B) ≤ r
2 . Lets consider why this is true. At each step we preserve the fact

that d(A,Ci) ≤ r
2 . Therefore d(A,Cn) ≤ r

2 . Also, for c ∈ C0 such that d(c,B) ≤ r
2 ,

we have that c ∈ Cn. Therefore, since we assume d(B,C) ≤ r
2 , it follows that

d(B,Cn) ≤ r
2 . Lastly, d(Cn, B) ≤ r

2 follows directly from the construction of the
set Cn.

We have now shown that d(A,Cn) ≤ r
2 , d(B,Cn) ≤ r

2 , and d(Cn, B) ≤ r
2 .

However, it is still possible that d(Cn, A) > r
2 . (In our example d(C2, A) > r

2 .)
If d(Cn, A) > r

2 , then there exists c ∈ Cn such that d(c, A) = d(Cn, A) > r
2 .

Then d(c, a) > r
2 for all a ∈ A. So A ∩ [c − r

2 , c + r
2 ] = ∅. (In our example,

A∩ [−1, 1] = ∅.) Using a construction similar to that of Cn we use a finite number
of steps to construct a finite subset C of R such that d(A,C) ≤ r

2 , d(B,C) ≤ r
2 ,

d(C, A) ≤ r
2 , and d(C, B) ≤ r

2 . The fact that d(A,C) ≤ r
2 , d(B,C) ≤ r

2 and
d(C, A) ≤ r

2 follow for the same reasons as in the construction of Cn. Lets consider
why d(C, B) ≤ r

2 . We know that d(Cn, B) ≤ r
2 . As we saw in the construction

of C1, d(C1 ∩K, A) ≤ r
2 . For the same reasons, we have that d(C − Cn, B) ≤ r

2 .
Therefore, d(C, B) ≤ r

2 . Thus, h(A,C) ≤ r
2 , and h(B,C) ≤ r

2 . (In our example,
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C = {−2,−1, 1, 2} and it is easily verifiable that h(A,C) ≤ 1, and h(B,C) ≤ 1.
See Figure 6.)

Figure 6. An illustration of the sets A, B, and C.

Lemma 2. Let A,B ∈ H(R). If d(A,B) > 0, then there exists b0 ∈ ∂B and a0 ∈ A
such that d(A,B) = d(a0, b0), and d(a0, b0) ≤ d(a0, b) for all b ∈ B.

A proof of Lemma 2 can be found in [6].
Up to this point we have characterized compactness in Rn with the Heine Borel

Theorem. However, an alternative characterization of compactness which is based
upon open covers will be useful throughout the rest of the paper. Given A ⊂ Rn,
an open cover of A is a collection O of open subsets of Rn whose union contains
A. A subcover derived from an open cover O is a subcollection O′ of O whose
union contains A [3]. The following theorem gives an alternative characterization
of non-empty compact subsets of Rn.

Theorem 3. If A 6= ∅ and for each open covering O of A there exists a finite open
subcover O′ of A, then A ∈ H(Rn).

A proof of Theorem 3 can be found in [3].

3.2. General Results. In this section we will consider more general subsets of
H(R). We will show that for any A,B ∈ H(R), there exists a C ∈ H(R), distinct
from A and B, such that C is on the line joining A and B. We then put restrictions
on the sets A and B and show that there are infinitely many C ∈ H(R) on the line
joining A and B. We begin with the following theorem.

Theorem 4. Let A, B be distinct elements in H(R). There exists C ∈ H(R),
distinct from A and B, such that h(A,B) = h(A,C) + h(C,B).

Proof. Let A,B ∈ H(R) such that A 6= B. We assume that h(A,B) = r. Thus
d(A,B) = r or d(B,A) = r. We will let d(A,B) = r and d(B,A) ≤ r. The case
where d(B,A) = r and d(A,B) ≤ r is similar. It is important to note that since
d(A,B) = r, every point of A is less than or equal to r units away from some point
of B. Likewise, since d(B,A) ≤ r, every point of B is less than or equal to r units
away from some point of A. Also, since d(A,B) = r, Lemma 2 tells us that there
exists b0 ∈ ∂B and a0 ∈ A such that d(A,B) = d(a0, b0), and d(a0, b0) ≤ d(a0, b)
for all b ∈ B.

We will now construct C ∈ H(R) such that h(A,B) = h(A,C) + h(C,B). We
assume b0 > a0. The case where a0 > b0 is similar. Let

c1 = a0 −
r

2
and c2 = a0 +

r

2
.

We have that d(a0, c1) = d(a0, c2) = d(b0, c2) = r
2 . See Figure 7.
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Figure 7. d(a0, c1) = d(a0, c2) = d(b0, c2) = r
2

Now let
F = {(x− r

2
, x +

r

2
) : x ∈ A ∪B}.

We see that F is an open cover of A ∪ B using intervals of length r. Since A,B ∈
H(R), A ∪B ∈ H(R). Thus, by theorem 3 there is a finite open subcover of A ∪B
in F , which we will call G.

Let G = {I1, I2, . . . , Ik} and C1 = {i1, i2, . . . , ik} where ij is the midpoint of
Ij for 1 ≤ j ≤ k. Every a ∈ A is in some Ig and every b ∈ B is in some Ij . So
d(A,C1) ≤ r

2 and d(B,C1) ≤ r
2 . However, we do not know that d(C1, A) ≤ r

2 and
d(C1, B) ≤ r

2 . If d(C1, A) > r
2 or d(C1, B) > r

2 we apply Lemma 1 and form a new
set C1 such that h(A,C1) ≤ r

2 and h(B,C1) ≤ r
2 .

We now let C2 = C1∪{c2}. If c ∈ C2∩(c1, c2) then we remove c from C2 and form
a new set C3. Since d(a0, b0) < d(a0, b) for all b ∈ B we see that B∩(c1− r

2 , c1+ r
2 ) =

∅ and d(B,C3) ≤ r
2 . However, we could have that d(A,C3) > r

2 . This can only
happen if there exists a′ ∈ [a0 − r, a0] ∩ A with d(a′, C3) > r

2 . To fix this, suppose
there exists a′ ∈ [a0 − r, a0] ∩A with d(a′, C3) > r

2 . Note that since d(a0, C3) = r
2 ,

we have that a′ < a0. Since d(A,B) = r, there must exist a b′ ∈ B such that
b′ ≤ a0 − r and d(a′, b′) ≤ r. For an illustration see Figure 8.

Figure 8. a′ ∈ [a0 − r, a0] ∩ A and b′ ∈ B such that b′ ≤ a0 − r and d(a′, b′) ≤ r.

We will now construct a set C such that d(A,C) ≤ r
2 , d(B,C) ≤ r

2 , d(C,A) ≤ r
2 ,

and d(C,B) ≤ r
2 . Let bm = max{B ∩ [min(B), a0 − r]} and note that bm ∈ B.

Consider the set

D = {x ∈ A ∩ [a0 − r, a0] : d(x, bm) ≤ r}.

Set a′′ = sup(D), c′ = a′′− r
2 and C = C3∪{c′}. Note that C is a finite set of points

containing c2, so C ∈ H(R). We first show that d(A,C) ≤ r
2 . Since d(A,B) ≤ r,

every x ∈ A ∩ [a0 − r, a0] is less than or equal to a′′. Then, since c′ = a′′ − r
2 , we

have that d(x, c′) ≤ r
2 for all x ∈ A ∩ [a0 − r, a0] which implies that d(A,C) ≤ r

2 .
We now discuss why d(B,C) ≤ r

2 and d(C,B) ≤ r
2 . The fact that a′′ ∈ D

follows for an argument similar to the one used in the previous lemma. Therefore,
since a′′ ∈ D, we have that d(a′′, bm) ≤ r. Since a′′ ∈ D, c′ = a′′ − r

2 and
d(c′, bm) ≤ r

2 we see that d(B,C) ≤ r
2 and d(C,B) ≤ r

2 . Lastly, we still must
show that d(C,A) ≤ r

2 . Since c′ = a′′ − r
2 , we have that d(c′, A) ≤ r

2 . Since
d(C − {c′}, A) ≤ r

2 and d(c′, A) ≤ r
2 we have that d(C,A) ≤ r

2 .
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We now will show that h(A,C) = r
2 and h(C,B) = r

2 . Since c′ = a′′ − r
2 and

a′′ ≤ a0, we see that c′ ≤ c1. Then, since C3 ∩ (c1, c2) = ∅ and a′′ < c1, we
have that C ∩ (c1, c2) = ∅ which implies that d(a0, C) = r

2 . Since d(A,C) ≤ r
2

and d(a0, C) = r
2 , we have that d(A,C) = r

2 . Since there is no b ∈ B such
that b ∈ (a0, b0) we have that d(C,B) = d(c2, b0) = r

2 . Thus h(A,C) = r
2 and

h(C,B) = r
2 . Therefore

h(A,C) + h(C,B) =
r

2
+

r

2
= r = h(A,B).

Thus we have found a C ∈ H(R) such that h(A,B) = h(A,C) + h(C,B).

Theorem 4 shows us that for any A,B ∈ H(R) we can find a point in H(R),
distinct from A and B, on the line joining A and B. In the following theorem we
put restrictions on the sets A and B and show that there are infinitely many points
in H(R) on the line joining A and B.

Theorem 5. Let A, B be distinct elements in H(R) with a1, a2 being the respective
minimum and maximum elements of A, b1, b2 being the respective minimum and
maximum elements of B, h(A,B) = r, d(a1, b1) < r, and d(a2, b2) < r. Then, there
exists infinitely many C ′ ∈ H(R) such that h(A,B) = h(A,C ′) + h(C ′, B).

Proof. We assume that A, B are distinct elements in H(R) with a1, a2 being
the respective minimum and maximum elements of A, b1, b2 being the respective
minimum and maximum elements of B, h(A,B) = r, d(a1, b1) < r, and d(a2, b2) <
r. We will consider two cases:

1. 0 < d(a1, b1) < r and 0 < d(a2, b2) < r.
2. a1 = b1 and 0 < d(a2, b2) < r. (The cases where a2 = b2 and 0 < d(a1, b1) < r,

or a1 = b1 and a2 = b2 are similar.)

Case(1): We assume that 0 < d(a1, b1) < r and 0 < d(a2, b2) < r. Also, we will
assume b1 < a1 and b2 < a2. The other possibilities are similar. Since h(A,B) = r,
we know that d(A,B) = r or d(B,A) = r. We assume that d(A,B) = r and the case
where d(B,A) = r is similar. Recall that Lemma 2 states that for A,B ∈ H(R), if
d(A,B) > 0, then there exists b0 ∈ ∂B and a0 ∈ A such that d(A,B) = d(a0, b0),
and d(a0, b0) ≤ d(a0, b) for all b ∈ B. Since d(A,B) = r > 0 we can apply Lemma
2. The a0 used cannot be a1 or a2 since d(a1, b1) < r and d(a2, b2) < r. Therefore,
there exists a0 ∈ A ∩ (a1, a2) and b0 ∈ ∂B satisfying Lemma 2. Now let C be
constructed as it is in Theorem 4. Note that in the construction of C, c1 = a0 − r

2
and c2 = a0 + r

2 . We now introduce points c3 and c4 to help construct sets C ′ so
that h(A,B) = h(A,C ′) + h(C ′, B). If a1 < c1, then let c3 = max{b1, a1 − r

2} and
c4 = min{a1, b1 + r

2}. See Figure 9.

Figure 9. An illustration of the first part of Case 1.
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Suppose c1 < a1. Since a1 < a0, d(a1, a0) < r
2 . Let c3 = a1 − r

2 and c4 =
min{c1, b1 + r

2}. It is important to note c3 < c4 ≤ c1. The fact that c3 < c4 is fairly
obvious. We will show that c4 ≤ c1. Note, b1 ≤ a0 − r, so b1 + r

2 ≤ a0 − r
2 . Thus

c4 ≤ c1. See Figure 10

Figure 10. An illustration of the second part of Case 1.

Case(2): We assume that a1 = b1 and 0 < d(a2, b2) < r. Since h(A,B) = r, we
know that d(A,B) = r or d(B,A) = r. We assume that d(A,B) = r. The case
where d(B,A) = r is similar. Since d(A,B) = r > 0 we can apply Lemma 2. The a0

used cannot be a1 since d(a1, b1) = 0. Since d(a0, B) = r, we see that a0 ≥ a1 + r.
Let C be constructed as in Theorem 4. In the construction of C, c1 = a0 − r

2 and
c2 = a0 + r

2 . We now introduce points c3 and c4 to help construct sets C ′ so that
h(A,B) = h(A,C ′) + h(C ′, B). Let c3 = a1− r

2 and c4 = a1− r
4 . Since a0 ≥ a1 + r

and c1 = a0 − r
2 it is important to note c3 < c4 < c1.

We now will use the points c3 and c4 which were introduced in cases 1 and
2 to construct infinitely many sets C ′. Let D = [c3, c4]. We see that for each
k ∈ D, d(k,A) ≤ r

2 and d(k,B) ≤ r
2 . For each k ∈ D, let C ′ = C ∪ {k}. Since

D ∩ (c1, c2) = ∅ and h(A,C) = h(C,B) = r
2 we see that h(A,C ′) = h(C ′, B) = r

2 .
Thus h(A,B) = h(A,C ′)+h(C ′, B) for each k ∈ D. Therefore there exists infinitely
many C ′ ∈ H(R) such that h(A,B) = h(A,C ′) + h(C ′, B).

Here is another special case.

Theorem 6. Let A,B ∈ H(R) such that A 6= B, h(A,B) = r, with a1, a2 being
the respective minimum and maximum elements of A, b1, b2 being the respective
minimum and maximum elements of B, and d(a1, b1) = r or d(a2, b2) = r. Then,
there exists infinitely many C ∈ H(R) such that h(B,C) = h(A,B) + h(A,C).

Proof. Let A,B ∈ H(R) such that A 6= B, h(A,B) = r, with a1, a2 being the
respective minimum and maximum elements of A, b1, b2 being the respective min-
imum and maximum elements of B, and d(a1, b1) = r or d(a2, b2) = r. We will
assume that d(a1, b1) = r. The case where d(a2, b2) = r is similar. We will also
assume that a1 ≤ b1. The case where b1 ≤ a1 is similar.

We will now construct sets C so that h(B,C) = h(A,B) + h(A,C). Let k ∈ R
such that k ≥ 0 and set

c = a1 − d(a1,max{a2, b2})− k.

Note that

d(c, a1) = d(a1,max{a2, b2}) + k and d(c, b1) = d(a1,max{a2, b2}) + k + r.

Figure 11 gives a general illustration of the point c when a2 < b2. Let C =
A ∪B ∪ {c} ∈ H(R).
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Figure 11. A ∪ B ∪ {c} is a point on the line joining A and B.

We will now consider the Hausdorff distances between the sets A, B, and C.
Since A and B are both subsets of C we see that d(A,C) = d(B,C) = 0. We also
have

d(C,A) = d(c, a1) = d(a1,max{a2, b2}) + k

and
d(C,B) = d(c, b1) = d(a1,max{a2, b2}) + k + r.

Therefore we see that

h(B,C) = d(a1,max{a2, b2}) + k + r,

and
h(A,C) = d(a1,max{a2, b2}) + k.

Therefore, there exists infinitely many C ∈ H(R) such that h(B,C) = h(A,B) +
h(A,C).

Given any two A,B ∈ H(R) with h(A,B) = r, the distance between the respec-
tive minimum and maximum elements of A and B will be r or less than r. Thus,
combining Theorems 5 and 6 gives the following corollary.

Corollary 1. Let A and B be distinct elements in H(R). There exist infinitely
many C ∈ H(R) on the line joining A and B.

The proof of the following theorem is very similar to Theorems 4 and 5. We
state the theorem without proof.

Theorem 7. Let A, B be distinct elements in H(R). If h(A,B) = r and there
exists an a0 ∈ ∂A and b0 ∈ ∂B such that d(a0, b0) = r and d(b0, A) = r then there
exists infinitely many C ∈ H(R) such that h(B,A) + h(A,C) = h(B,C).

4. Intersection Properties Of Lines

Euclidean Lines in Rn only intersect in one, zero, or infinitely many points. We
think of two lines as being parallel if they do not intersect at any point. Also, in
Euclidean geometry, if two lines intersect in infinitely many points, then they are
the same line. In the geometry of H(R) do distinct lines only intersect in zero or
one points? The following theorem answers this question as no.

Theorem 8. Two distinct lines in H(R) can intersect in infinitely many points.

Proof. We will construct such an example. Let k ∈ R, such that k > 2, A = [0, 2],
B = [8, 10], C = [−1, 1]∪[9, 11], and D = [4, 5− 1

k ]∪[5+ 1
k , 6]. See Figure 12. We see

that A, B, C, and D are all closed and bounded sets of R, and therefore are inH(R).
We will first consider the line joining A and B. We see that d(A,B) = d(B,A) = 8.
Therefore h(A,B) = 8. Consider the point C ∈ H(R). We see that d(A,C) = 1
and d(C,A) = 9. Therefore h(A,C) = 9. Similarly, we see that d(B,C) = 1 and



12 CHRISTOPHER FRAYER

d(C,B) = 9. Therefore h(B,C) = 9. Therefore C is not on the line joining A and
B, and B is not on the line joining A and C.

Figure 12. Distinct lines intersecting in infinitely many points.

Now consider the point D. We see that d(A,D) = d(D,A) = d(B,D) =
d(D,B) = 4. Therefore h(A,D) = h(B,D) = 4. Thus h(A,B) = h(A,D)+h(D,B)
and D is on the line joining A and B for any value of k. Now consider the point
D and the line joining C and A. We have already shown that h(C,A) = 9, and
h(A,D) = 4. We see that d(C,D) = 5, and d(D,C) = 3 + k−1

k . Therefore
h(C,D) = 5. Thus, h(A,C) = h(A,D) + h(D,C) and D is on the line joining A
and C for any value of k. Therefore we see that the line joining A and B intersects
the line joining A and D at infinitely many points in H(R).

5. Conclusion

This paper has looked at some special cases when dealing with lines in H(R),
as well as looking at H(R) in general. We have shown that given any two points
A and B in H(R) there exists infinitely many point in H(R) on the line joining A
and B. We also have looked at several special cases. For example, given any two
closed and bounded intervals of R, A and B, there exists infinitely many C ∈ H(R)
satisfying each version of the triangle equality.

There is still much work to be done on this topic. Further work includes finishing
to classify all lines in H(R). Once this is done, a characterization of lines needs
to be generalized to H(Rn). We know that distinct lines can intersect in infinitely
many points. Given n ∈ N, can we find distinct lines that intersect in exactly n
points? (This question is partially answered in [6]. It is shown that in H(Rn) we
can find distinct lines that intersect in 0, 1, or infinitely many points. Can we find
distinct lines that intersect in 7 points?) What type of geometry does this form?
We have seen that Euclidean lines are embedded within H(Rn). Do special subsets
of H(Rn) form even different types of geometries, or maybe other familiar types of
geometries?
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