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EXCELLENT RINGS WITH SINGLETON FORMAL FIBERS

DAN LEE, LEANNE LEER, SHARA PILCH, YU YASUFUKU

Abstract. In this paper we construct a non-complete excellent local ring A

such that the natural map Spec bA −→ SpecA is bijective.

1. Introduction

Although this paper focuses on a commutative algebra result, we shall begin by

talking about algebraic geometry and its relationship with commutative algebra.

An algebraic variety is a set of common zeroes of a polynomial with coefficients in

some field k. Varieties are very important in algebraic geometry, and to study them

we analyze the set of regular functions from the variety to k. This set turns out to

be an affine ring, that is, a ring of the form k[x1, . . . , xn]/I where I is an ideal.

Affine rings have very nice properties, and so a question naturally arises . . .

which of these nice properties are the ones that make affine rings geometrically

significant? Algebraists have tried to capture these nice properties by classifying

nice rings through a definition. The first attempt at doing this was the definition of

Noetherian. A Noetherian ring is a ring in which every ideal is finitely generated.

But it turns out that this classification is much too weak and does not capture

the properties that were hoped for. So a new definition was needed. In the 1950’s

Grothendieck presented the definition of excellent, and this is the latest attempt at

answering the above question.
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A formal definition of excellent, as well as many other technical definitions, is

included in section 3 of this paper, but here we shall attempt to describe the idea

behind excellence.

Let (A,M) be a local ring.1 By Cohen’s Structure Theorem we know the struc-

ture of Â, the M -adic completion of A. In particular, we know that if Â contains a

field k, then Â is of the form k[[x1, . . . , xn]]/I, which is quite geometric as it relates

to affine rings. Furthermore, there is a nice relationship between A and Â, namely

that any prime of A can be written as p ∩ A, for some prime ideal p in Â. This

property is called faithful flatness, and it is saying that every prime ideal of A can,

in some sense, be described by prime ideals of the completion. So the idea behind

excellence is this—since we know Â is geometric and that the prime ideals of A can

be described by the primes of Â, we hope to carry the geometric properties of Â

down to A by controlling which primes of Â map to which primes of A. Since the

whole goal is to capture nice geometric properties of rings, to say that A is excellent

is to say that it satisfies some “nice” conditions about which primes of Â map to

which primes of A, thereby transferring the geometric properties of Â down to A.

The definiton of excellent has proved to be successful in some ways. It ensures

that reducedness and normality are preserved by the completion map, that is to

say that if A is an excellent reduced (or normal) ring, then Â will be reduced (or

normal). This is not always the case when A is not excellent. But excellent rings do

seem to fall short of their purpose; they do not appear to capture all the properties

of affine rings. Matsumura has shown that if R is an affine ring, then there exist

infinitely many maximal elements in the generic formal fiber of A, that is, we can

find a countably infinite list of prime ideals p1, p2, . . . of Â such that pi ∩ A = (0)

for each i, and for any prime ideal q strictly containing any pi, q∩A 6= (0) [5]. For

excellent rings this is not necessarily the case. The following theorem, which was

proved in [3] by Loepp, demonstrates how extremely different the situation may be

for an excellent ring.

1In this paper all rings are commutative with unity. When we write (R,M) is a quasi-local

ring, we mean that R is a quasi-local ring with maximal ideal M .
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Theorem 1.1. Let (T,m) be a complete regular local ring of dimension at least

two containing the rationals, and let |T/m| ≥ |R|. Let p 6= m be a prime ideal of T .

Then there exists an excellent regular local ring A with the following properties:

• Â = T .

• The generic formal fiber of A is local with p its maximal ideal.

• For all q ∈ SpecT , if q 6⊆ p, then (q ∩A)T = q.

The above A is very strange for two reasons. First, the generic formal fiber

of A has exactly one maximal element, whereas there were infinitely many in the

affine case. Second, by the third property of the theorem, there is a one-to-one

correspondence between the primes of A and the primes of T not contained in the

generic formal fiber of A. Although this property is nice in some sense, it is far

from the behavior exhibited by affine rings. Such an odd ring hardly deserves to

be called “excellent,” and yet A is an excellent ring.

In this paper, we use the above theorem to help us construct an excellent regular

local ring B such that there is a one-to-one correspondence between the primes of B

and the primes of B̂ while B 6= B̂. Since B is excellent, there are strong conditions

on the formal fibers of B, and yet all of the formal fibers turn out to be singleton

sets.

2. Main Theorem

Theorem 2.1. Let T be a complete regular local ring with maximal ideal m such

that dimT ≥ 2, Q ⊆ T , and |T/m| ≥ |R|. Suppose x ∈ T is a prime element.

Then there exists an excellent regular local ring B such that B̂ = T , the natural

map SpecT −→ SpecB is bijective, and x /∈ B.

Proof. Since T is a regular local ring, T is a UFD by (20.3) of [4]. Since dimT ≥ 2,

m is a prime ideal generated by at least two elements, so by factoring the genera-

tors into prime elements, we see that there are at least two prime elements in T .

Therefore let y 6= x be a prime element. Using Theorem 1.1, we construct A so

that its generic formal fiber is {(0), xT}.
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We now define B = A[xy]m∩A[xy]. We will prove that this B satisfies the con-

clusion of the theorem. Clearly B is quasi-local. Moreover, by the Hilbert Basis

Theorem, A[xy] is Noetherian, and since the localization of a Noetherian ring is

Noetherian, it follows that B is Noetherian. Thus B is local. Obviously, A ⊆ B,

and since elements in A[xy]− (m∩A[xy]) ⊆ T −m are all units in T , it follows that

B ⊆ T . By completeness of T , every Cauchy sequence in T converges in T , so in

particular, every Cauchy sequence in B converges in T . Moreover, Â = T implies

that every element of T can be written as the limit of a Cauchy sequence in A, and

therefore also as the limit of a Cauchy sequence in B. Hence B̂ = T . Also note

that B is a regular local ring since T is a regular local ring (see (10.15)(iii) and

(11.12)(ii) of [1]). Note that this implies that B is a UFD.

Claim 2.1. x /∈ B

Proof. Assume x ∈ B. Then x = a0+a1xy+···+am(xy)m

a′0+a′1xy+···+a′n(xy)n , where the de-

nominator is not in m. So x(a′0+a′1xy+· · ·+a′n(xy)n) = a0+a1xy+· · ·+

am(xy)m. So a0 ∈ xT ∩A = (0). Then since T is a domain, we can can-

cel x on both sides to conclude that a′0 +a′1xy+ · · ·+a′n(xy)n ∈ yT ⊆ m,

which is a contradiction.

Since T is the completion of B, we know that the map SpecT −→ SpecB is

surjective by faithful flatness. We also want to show that it is injective.

Claim 2.2. For all p ∈ SpecT such that p 6⊆ xT , we have (p∩B)T = p.

Proof. By our construction of A and by Theorem 1.1, we know that

(p ∩A)T = p. So p = (p ∩A)T ⊆ (p ∩B)T ⊆ p.

The only primes contained in xT are (0) and xT , so in order to get injectivity we

need to check the following four cases: for all distinct p, q ∈ SpecT not contained

in xT :

(i) p ∩B 6= (0) ∩B

(ii) p ∩B 6= xT ∩B

(iii) xT ∩B 6= (0) ∩B

(iv) p ∩B 6= q ∩B
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We know p ∩ A 6= (0) by the construction of A, so (i) follows. For (ii), suppose

p ∩ B = xT ∩ B. Then by Claim 2.2, p = (p ∩ B)T = (xT ∩ B)T ⊆ xT . This is a

contradiction, so we have (ii). Clearly xy is nonzero and xy ∈ xT ∩B, thus we get

(iii). Case (iv) follows directly from Claim 2.2. Therefore SpecT −→ SpecB is a

bijection.

We also want B to be excellent. Because T is an integral domain and contains Q,

it suffices to show that all of its formal fiber rings are regular rings (see “excellent”

in section 3). In fact, we will show that in this case each formal fiber ring is a field.

This will complete the proof of the theorem.

Fix a prime ideal P of B. Let k(P ) = BP /PBP be the residue field of BP . We

need to show that the formal fiber ring at P , T ⊗B k(P ), is a field.

As noted on page 56 of [2], T ⊗B k(P ) ∼= S−1T/
(
(PT )(S−1T )

)
, where S =

B − P and the bar denotes saturation (see section 3 for the definition of saturation).

Moreover, the prime ideals of this formal fiber ring correspond to the prime ideals

of T which contract down to P , so by the (1-1) correspondence proved above, this

ring has a unique prime ideal. Thus it suffices to show that for each P ∈ SpecB,

(PT )(S−1T ) is a prime ideal of S−1T . This would show that S−1T/
(
(PT )(S−1T )

)
is an integral domain, and therefore the unique prime ideal must be the zero ideal,

proving that the formal fiber ring at P is a field. Now we divide into cases depending

on p, where p is the unique prime ideal of T such that p ∩B = P .

(a) Suppose p = xT .

P = xT ∩B is a nonzero prime ideal as it contains xy. Since the completion

map is flat, the Going Down Theorem holds (see exercise 5.11 in [1]). This

implies that xT ∩ B has height at most 1, since xT has height 1. Because

xT ∩B is nonzero, it follows that xT ∩B is a height 1 prime, and since B is

a UFD, it follows that xT ∩B = bB for some prime element b ∈ B.

We know that b = xt for some t ∈ T and we also know that xy = bb′ for

some b′ ∈ B, since xy ∈ xT ∩ B = bB. Then we have xy = bb′ = xtb′, so

y = tb′ since T is an integral domain. Further, since y is a prime element

in T , it follows that either t or b′ must be a unit in T . We claim that t can
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never be a unit. Assume on the contrary that t is a unit. Then xt = b ∈ B =

A[xy]m∩A[xy], so we can write

xt =
a0 + a1xy + · · ·+ am(xy)m

a′0 + a′1xy + · · ·+ a′n(xy)n
,

where the denominator is not in m. Clearing the denominator, we get

xt(a′0 + a′1xy + · · ·+ a′n(xy)n) = a0 + a1xy + · · ·+ am(xy)m.

Thus, a0 ∈ xT ∩A = (0), so a0 = 0. Now, observe that the RHS is divisible by

y, y is a prime element in T , and y - xt. So a′0+a′1xy+· · ·+a′n(xy)n ∈ yT ⊆ m.

But this is a contradiction since a′0 +a′1xy+ · · ·+a′n(xy)n was assumed not to

be in m. So we have proved that t cannot be a unit. Thus b′ must be a unit.

Now, PT = (xT ∩B)T = bT = xy(b′)−1T = xyT . Note that yT 6⊆ xT . So by

the construction of A, it follows that yT ∩A 6= (0). So let 0 6= yt′ ∈ A. If yt′

were in P , then yt′ ∈ PT ∩ A ⊆ xT ∩ A = (0), yielding a contradiction. So

yt′ ∈ B − P , and thus by definition of saturation, y ∈ S. Thus, in S−1T , y is

a unit, so (PT )(S−1T ) = (xyT )(S−1T ) = (xT )(S−1T ). Since xT is a prime

ideal of T , this is a prime ideal of S−1T if we can show that xT ∩ S = ∅.

But this is clear, since if xu ∈ S, then xut′′ ∈ B − P for some t′′ ∈ T ,

so xut′′ ∈ xT ∩ B = P , giving a contradiction. Thus, we have shown that

(PT )(S−1T ) is a prime ideal, so we are done with this case.

(b) Suppose p = (0).

Since p = (0), P = (0), and so PT = (0). So (PT )(S−1T ) = (0) and is

therefore prime, since S−1T is an integral domain.

(c) Suppose p 6⊆ xT .

Recall that P = p ∩B. Then PT = (p ∩B)T = p by Claim 2.2. Therefore

PT is prime in T . Thus, to show that (PT )(S−1T ) is prime, we only need to

show that PT ∩ S = ∅. Assume t ∈ PT ∩ S. Then since t ∈ S, tt′ ∈ B − P

for some t′ ∈ T , which implies tt′ ∈ PT ∩ B = P . This is a contradiction.

Therefore (PT )(S−1T ) is prime.

This concludes the proof of Theorem 2.1.
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3. Definitions

In this section we define some necessary terms. See [7], [1], or [4] for more

explanation.

• Spec R: In a ring R, SpecR denotes the set of all prime ideals in R.

•Quasi-local: A ring R is called quasi-local when it has exactly one maximal

ideal.

•Local: A ring R is called local when it is quasi-local and also Noetherian.

•Localization: Let S be a multiplicatively closed subset of a commutative ring

R. Then the ring of fractions S−1R is the ring we obtain by inverting all elements

of S. When S = R− P for some P ∈ SpecR, we write RP for S−1R. In this case,

RP is a quasi-local ring, called the localization of R at P , with maximal ideal PRP .

• Saturation: Let S be a multiplicatively closed subset of R. Define the satura-

tion of S to be S = {r ∈ R|rr′ ∈ S for some r′ ∈ R}. Note that S−1R = (S)−1R.

• Regular Local Ring: Let (R,M) be a local ring. Then (R,M) is called a

regular local ring if M can be generated by dimR elements.

• Regular Ring: A ring R is called a regular ring when the localization at

every prime ideal is a regular local ring.

• Complete: We can define a metric on a local ring (R,M) as follows. For all

x, y ∈ R, let n be the largest integer such that x− y ∈Mn, where M0 = R. Then

we define the metric d(x, y) = 1
2n when n exists and 0 otherwise.

A local ring R is called complete when it is complete with respect to the above

metric, that is, when all its Cauchy sequences converge.

• Completion: The completion of a local ring A is the ring of all Cauchy

sequences modded out by the following equivalence relation: two Cauchy sequences

are equivalent if their difference converges to zero. The completion of A is denoted

Â; this is always complete.

• Formal Fiber: Let (A,m) be a local ring, Â its completion, and P a prime

ideal in A. We define the formal fiber of A at P to be the inverse image of P under

the map Spec Â −→ SpecA. That is, prime ideals in the formal fiber at a prime

ideal P are the prime ideals of Â that lie over P .
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• Generic Formal Fiber: The generic formal fiber of a local integral domain

is the formal fiber of (0).

• Formal Fiber Ring: We call the ring Â ⊗A (AP /PAP ) the formal fiber

ring of A at P . The prime spectrum of the formal fiber ring of A at P naturally

corresponds to the formal fiber of A at P .

• Flat: Let A be a ring and let M , N , and N ′ be A-modules. We say that M is

flat over A if for all injections f : N ′ −→ N , f ⊗ 1 : N ′ ⊗AM −→ N ⊗AM is also

injective.

• Faithfully Flat: A ring B is said to be faithfully flat over A if B is flat over

A and SpecB → SpecA is surjective. For a local ring A, Â is faithfully flat over A.

• Excellent: Let (A,M) be a local ring. For each P ∈ SpecA, let k(P ) denote

the field AP /PAP . Then A is said to be excellent if it satisfies the following two

conditions: (a) For each P ∈ SpecA, the formal fiber ring Â⊗Ak(P ) is geometrically

regular over k(P ) , that is,(
Â⊗A k(P )

)
⊗k(P ) L ∼= Â⊗A L

is regular for every finite field extension L over k(P ), and (b) A is universally

catenary.

In this paper, it is easier to check excellence because of additional conditions.

Specifically, assume that (T,m) is a complete local domain containing Q and let A

be a local ring such that T = Â. Then by Theorem 31.6 in [4], condition (b) is

automatically satisfied for A. Moreover, since every integer in T is invertible, no

integer belongs to m. For P ∈ SpecA, P ⊆ m ∩ A ⊆ m, so it follows that k(P ) =

AP /PAP must be a field of characteristic zero. So the only purely inseparable

extension of this field is itself. Thus, by Remark 1.3 in [6], for (a), we only need to

check that each formal fiber ring Â⊗A (AP /PAP ) is a regular ring.
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