
On the packing chromatic number of some lattices

Arthur S. Finbow∗

Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Canada B3H 3C3
art.finbow@stmarys.ca

Douglas F. Rall
Department of Mathematics

Furman University
Greenville, SC 29613 USA

doug.rall@furman.edu

Abstract

For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance
between any two distinct vertices from A is more than k. The packing chromatic number of G is
the smallest integer m such that the vertex set of G can be partitioned as V1, V2, . . . , Vm where Vi

is an i-packing for each i. It is proved that the planar triangular lattice T and the 3-dimensional
integer lattice Z3 do not have finite packing chromatic numbers.
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1 Introduction

Let G = (V,E) be a graph, finite or infinite, and let n be a positive integer. For a vertex x in G, the
ball of radius n centered at x is the set, Bn(x), of all vertices in V whose distance in G from x is no
more than n. That is, Bn(x) = {v ∈ V (G) | dG(x, v) ≤ n}. The sphere of radius n centered at x is the
subset of the ball of radius n centered at x defined by ∂Bn(x) = {v ∈ Bn(x) | dG(x, v) = n}. We will
use Bn(x) and ∂Bn(x) to refer either to the set of vertices or to the subgraph of G induced by this set
of vertices in G. The meaning will be clear from the context. Although we are dealing with infinite
graphs, for a finite subgraph H of G, the order of H will be denoted |H|, and E(H) will denote the
set of edges in H.
For a positive integer r, a subset A of V is an r-packing if the distance in G between each pair of
distinct vertices in A is more than r. The number r is called a width of the packing A. Note that
if A is an r-packing and r ≥ 2, then A is also an (r − 1)-packing. An independent set is thus a
1-packing, and a 2-packing is a collection of vertices with pairwise disjoint closed neighborhoods. We
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are interested in partitioning the vertex set of a graph into the minimum number of packings, each
having a distinguishing width. Specifically, the packing chromatic number of a graph G, denoted
χρ(G), is the smallest positive integer k for which there exists a map c : V (G) → {1, 2, . . . , k} such
that Vr = c−1(r) is an r-packing in G for each 1 ≤ r ≤ k. Such a function c is called a packing coloring
of G. This type of coloring, which is more restrictive than the usual proper coloring, is the only type
of coloring we consider in this paper. Thus, for convenience we simply refer to a packing coloring
as a coloring, and we use the term to refer either to c or to the accompanying induced partition
V1, V2, . . . , Vk of V (G). If no such coloring of G exists for any positive integer k, then we say G has
infinite packing chromatic number.
The Cartesian product of two graphs G and H is the graph, G2H, whose vertex set is the (set)
Cartesian product V (G) × V (H). Two vertices of G2H are adjacent if they are the same in one
coordinate and adjacent in the other coordinate. That is, the edge set of G2H consists of

{[(g, h), (g, h′)] |hh′ ∈ E(H), g ∈ V (G)} ∪ {[(g, h), (g′, h)] | gg′ ∈ E(G), h ∈ V (H)} .

The two-way infinite path with the integers as vertex set will be denoted P∞. Let Z2 denote the
planar integer lattice (i.e., Z2 = P∞2P∞) while Z3 = P∞2P∞2P∞ is the 3-dimensional integer
lattice. If all edges of the form [(i, j), (i + 1, j − 1)] are added to the graph Z2 we obtain the planar
triangular lattice denoted by T .
The notion of the packing chromatic number was first introduced in [3] where it was called the
broadcast chromatic number. Brešar et al. [1] chose the name packing chromatic number because it
is both a partitioning (coloring) and a packing concept. Most of the results that have appeared about
this invariant concern finite graphs. Not surprisingly, computing the packing chromatic number of
an arbitrary graph is computationally difficult. Goddard et al. proved in [3] that deciding whether
χρ(G) ≤ 4 is NP-hard for a finite simple graph G.
Concerning infinite graphs, not much is known about the packing chromatic number. It is easy to
see that the two-way infinite path has packing chromatic number 3. The values of χρ(Pn2P∞) for
n = 2, 3, 4 and 5 are 5, 7, 8 and 9 respectively, as shown in [3]. Also in [3] it was shown that for
the planar integer lattice Z2, 9 ≤ χρ(Z2) ≤ 23. The lower bound of 9 follows from the result for
infinite grids of width 5 listed above, while the upper bound was constructive. In [5] Sloper showed
that the infinite 3-regular tree has packing chromatic number 7. It was established in [1] that the
infinite hexagonal lattice, H, has packing chromatic number bounded between six and eight, inclusive.
Vesel [6] showed by computer analysis that χρ(H) ≥ 7, and then a coloring of H using seven colors
was discovered by Fiala and Lidicky [2], thus proving that χρ(H) = 7.
The remainder of the paper is organized as follows. In the next section we show that the planar
triangular lattice T admits no finite packing coloring. Finally, in Section 3 we prove that Z3 has no
packing coloring that uses a finite number of colors.

2 Triangular Lattice

In this section we prove that T has no packing coloring using only a finite number of colors. Our
approach is to show that for an arbitrary vertex x in T , there is a large enough radius M such that
it is impossible to partition BM (x) into sets A1, A2, . . . , A2p+1 where each Ai is an i-packing. Since
χρ(H) ≤ χρ(G) whenever H is a subgraph of G, the result for T follows immediately.
The proof of the following lemma is clear from the definition of T .

Lemma 1 If x is a vertex in T and n is a positive integer, then the subgraph of T induced by ∂Bn(x)
is isomorphic to the cycle C6n. Thus, in particular, ∂Bn(x) has 6n vertices and 6n edges.
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Lemma 2 If x is a vertex in T and n is a positive integer, then |Bn(x)| = 3n2 + 3n+ 1.

Proof. The graph T is regular of degree 6 and so |B1(x)| = 7. Suppose the statement is true
for n = k. We observe that Bk+1(x) \ Bk(x) = ∂Bk+1(x). Therefore, by Lemma 1, |Bk+1(x)| =
|Bk(x)|+ |∂Bk+1(x)| = (3k2 + 3k+ 1) + 6(k+ 1) = 3(k+ 1)2 + 3(k+ 1) + 1 and the result follows by
induction.

Lemma 3 If x is a vertex in T and n is a positive integer, then the number of triangular faces in
Bn(x) is 6n2.

Proof. The truth of the statement for n = 1 follows directly from the definition of T . Suppose
that the statement is true for n = k. By Lemma 1 the subgraph ∂Bk(x) has 6k edges and ∂Bk+1(x)
has 6k + 6 edges, each of which belongs to exactly one triangular face in Bk+1(x) \ Bk−1(x). Also,
each triangular face in the subgraph Bk+1(x) \Bk−1(x) has either one edge in ∂Bk(x) or one edge in
∂Bk+1(x), but not both. This implies that Bk+1(x) \Bk−1(x) has 12k+ 6 triangular faces, and hence
Bk+1(x) has 6k2 + (12k + 6) = 6(k + 1)2 triangular faces, and the proof is complete.

Lemma 4 If x is a vertex in T and ε > 0 is a real number, then there exists a positive integer M0

such that whenever M is an integer with M ≥ M0 and whenever A is an independent set in BM (x),

then |A|
|BM (x)| <

1
3 + ε.

Proof. Let n be a positive integer and let A be an independent set in Bn(x). Then for each a ∈ A,
Ta = B1(a) is a planar graph with 6 triangular faces. Since A is independent, Ta and Tb can have no
triangular face in common for a 6= b, a,b ∈ A.
Next observe that each face of any such Ta must be a face of Bn+1(x). It follows that the total number

of triangular faces in
⋃
a∈A

Ta must not exceed the number of triangular faces in Bn+1(x). Thus by

Lemma 3, we have 6|A| ≤ 6(n+1)2. On the other hand, by Lemma 2, we have |Bn(x)| = 3n2 +3n+1.

Hence |A|
|Bn(x)| ≤

(n+1)2

3n2+3n+1 . The conclusion of the lemma now follows from the fact that

lim
n→∞

(n+ 1)2

3n2 + 3n+ 1
=

1

3
.

Lemma 5 Let x be any vertex of T and let r be a positive integer. There exists a positive integer
Mr, such that whenever M ≥ Mr and {Br(a) | a ∈ A} is a collection of pairwise disjoint subsets for

A ⊆ V (BM (x)) it follows that |A|
|BM (x)| <

1
3r(r+1) .

Proof. Let n and r be positive integers and let A ⊆ Bn(x) such that {Br(a) | a ∈ A} is pairwise

disjoint. Observe that
⋃
a∈A

Br(a) ⊆ Bn+r(x), and hence |
⋃
a∈A

Br(a)| ≤ |Bn+r(x)|. Then Lemma 2

implies that |A|(3r2 + 3r + 1) ≤ 3(n+ r)2 + 3(n+ r) + 1, and hence it follows that

|A|
|Bn(x)|

≤ 3(n+ r)2 + 3(n+ r) + 1

(3r2 + 3r + 1)(3n2 + 3n+ 1)
.
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But

lim
n→∞

3(n+ r)2 + 3(n+ r) + 1

(3r2 + 3r + 1)(3n2 + 3n+ 1)
=

1

3r2 + 3r + 1
<

1

3r(r + 1)
,

and therefore the conclusion of the lemma follows.

Theorem 6 The planar triangular lattice T has infinite packing chromatic number.

Proof. Suppose for a contradiction that for some positive integer p, T has a packing coloring with a
range contained in the set I = {1, 2, . . . , 2p+ 1}. Choose a fixed vertex x in T and for each i ∈ I, let
Ai be the i−packing in T consisting of all the vertices in T labeled i by this coloring.
Now observe that for any i ∈ I, i > 1, if a and b are in Ai and a 6= b then we have Bri(a)∩Bri(b) = ∅
where ri = b i2c. Thus by Lemma 5, there is a positive integer Mi such that if M ≥ Mi, then
|Ai ∩BM (x)|
|BM (x)|

<
1

3ri(ri + 1)
. Furthermore, by Lemma 3, there is an integer M1 such that if M ≥M1

then
|A1 ∩BM (x)|
|BM (x)|

<
1

3
+

1

3(p+ 1)
.

Set K = max
i∈I
{Mi}. Since we are dealing with a packing coloring of the whole of T , the fraction f

of labeled vertices in BK(x) is equal to 1. On the other hand we can strictly bound this fraction as
follows,

f =

2p+1∑
i=1

|Ai ∩BK(x)|
|BK(x)|

<
1

3
+

1

3(p+ 1)
+

2p+1∑
i=2

1

3ri(ri + 1)
. (1)

However, recalling the definition of ri, we see that

2p+1∑
i=2

1

3ri(ri + 1)
= 2

p∑
i=1

1

3i(i+ 1)
=

2

3

p∑
i=1

(
1

i
− 1

i+ 1
) =

2

3
(1− 1

p+ 1
). (2)

By combining inequality (1) and equation (2) we infer that f < 1, a contradiction.

3 Three Dimensional Integer Lattice

In this section we investigate chromatic packings of Z3 and prove that the three dimensional integer
lattice has infinite packing chromatic number. The proof of the first lemma is straightforward and is
omitted.

Lemma 7 If x is a vertex in Z3 and n is a positive integer, then ∂Bn(x) is isomorphic to the
complement of K4n2+2. In particular, |∂Bn(x)| = 4n2 + 2 and |E(∂Bn(x))| = 0.

Lemma 8 If x is a vertex in Z3 and n is a positive integer then |Bn(x)| = 4
3n

3 + 2n2 + 8
3n+ 1.
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Proof. For n = 1 this is easy to check.
Suppose that the result is true for n = k. We observe that Bk+1(x) \Bk(x) = ∂Bk+1(x). Therefore,

|Bk+1(x)| = |Bk(x)|+ |∂Bk+1(x)|

= (
4

3
k3 + 2k2 +

8

3
k + 1) + (4(k + 1)2 + 2)

=
4

3
(k + 1)3 + 2(k + 1)2 +

8

3
(k + 1) + 1,

and the proof is complete.

In addition to using the fact that certain balls in Z3 are vertex-disjoint, as we did when studying T
in Section 2, our proof technique here will also use the fact that certain odd radius balls in Z3 are
edge-disjoint although they may share vertices. For example, consider the path P of order eleven
whose vertices are v1, v2, . . . , v11 in the natural order. The set {v1, v11} is a 9-packing in P . The balls
of radius 5, B5(v1) and B5(v11), share the vertex v6 but they have no edges in common. The following
result makes this precise in the case of bipartite graphs.

Lemma 9 Let G be a bipartite graph and let r = 2k+1 be a positive odd integer. If A is any r-packing
of G and x and y are distinct vertices in A, then the induced subgraphs Bk+1(x) and Bk+1(y) have
no edges in common.

Proof. Suppose the edge e = ab belongs to both induced subgraphs, Bk+1(x) and Bk+1(y). By
definition, dG(x, a) ≤ k + 1, dG(x, b) ≤ k + 1, dG(y, a) ≤ k + 1, and dG(y, b) ≤ k + 1. Since G is
bipartite, dG(x, a) 6= dG(x, b) and dG(y, a) 6= dG(y, b). We may assume that dG(x, a) < dG(x, b), and
hence dG(x, a) ≤ k. Therefore,

dG(x, y) ≤ dG(x, a) + dG(a, y) ≤ 2k + 1 = r ,

contrary to the fact that A is an r-packing.

The next result counts the number of edges in a ball of radius n in Z3.

Lemma 10 If x is a vertex in Z3 and n is a positive integer, then the number of edges in the induced
subgraph Bn(x) is 4n3 + 2n.

Proof. The statement is clearly true for n = 1. Suppose it is true for n = k. The subgraph ∂Bk(x)
has 4k2 + 2 vertices by Lemma 7. Considering these vertices in the induced subgraph Bk(x) we see
that six are incident with one edge, 12k − 12 are incident with two edges, and 4k2 − 12k + 8 are
incident with three edges of Bk(x). But Z3 is regular of degree six, and each edge that belongs to
the subgraph Bk+1(x) but not to Bk(x) is incident with exactly one vertex of the boundary ∂Bk(x).
Therefore, by the inductive hypothesis the total number of edges in Bk+1(x) is

4k3 + 2k + 6 · 5 + (12k − 12)4 + (4k2 − 12k + 8)3 = 4(k + 1)3 + 2(k + 1) ,

thus completing the induction step.

Lemma 11 Let x be a vertex in Z3, let ε > 0 be a real number and let r be a positive integer. There
exists a positive integer Mr such that for every integer M ≥ Mr, if A ⊆ V (BM (x)) has the property
that {Br(a) | a ∈ A} is a collection of pairwise disjoint subsets of V (Z3), then

|A|
|BM (x)|

<
3

4r3 + 6r2 + 8r + 3
+

ε

2r+1
.
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Proof. Let n be a positive integer and let A ⊆ V (Bn(x)) such that {Br(a) | a ∈ A} is a family of pair-

wise disjoint subsets of V (Z3). Observe that
⋃
a∈A

Br(a) ⊆ Bn+r(x), and hence |
⋃
a∈A

Br(a)| ≤ |Bn+r(x)|.

Then Lemma 8 implies that

|A|(4r3 + 6r2 + 8r + 3) ≤ (4(n+ r)3 + 6(n+ r)2 + 8(n+ r) + 3) ,

and so we obtain
|A|
|Bn(x)|

≤ 4(n+ r)3 + 6(n+ r)2 + 8(n+ r) + 3

(4r3 + 6r2 + 8r + 3) 1
3 (4n3 + 6n2 + 8n+ 3)

.

But, since r is fixed, the conclusion of the lemma follows from the fact that

lim
n→∞

4(n+ r)3 + 6(n+ r)2 + 8(n+ r) + 3

(4r3 + 6r2 + 8r + 3) 1
3 (4n3 + 6n2 + 8n+ 3)

=
3

4r3 + 6r2 + 8r + 3
.

Lemma 12 Let x be a vertex in Z3, let ε > 0 be a real number and let r be a positive integer. There
exists a positive integer Mr such that for every integer M ≥ Mr, if A ⊆ V (BM (x)) has the property
that {E(Br(a)) | a ∈ A} is a family of pairwise disjoint subsets of E(Z3), then

|A|
|BM (x)|

<
3

4r3 + 2r
+

ε

2r+1
.

Proof. Let n be a positive integer and let A ⊆ V (Bn(x)) be such that the family of subsets
{E(Br(a))|a ∈ A} of E(Z3) is pairwise disjoint. Following the same line of reasoning as in the
proof of Lemma 11 and using Lemma 10, we deduce |A|(4r3 + 2r) ≤

(
4(n+ r)3 + 2(n+ r)) and hence

|A|
|Bn(x)|

≤ 4(n+ r)3 + 2(n+ r)

(4r3 + 2r) 1
3 (4n3 + 6n2 + 8n+ 3)

.

Similar to before, the conclusion is now implied by

lim
n→∞

4(n+ r)3 + 2(n+ r)

(4r3 + 2r) 1
3 (4n3 + 6n2 + 8n+ 3)

=
3

4r3 + 2r
.

Theorem 13 The three dimensional integer lattice Z3 has infinite packing chromatic number.

Proof. Suppose for a contradiction that for some positive integer p, there is a packing coloring c of
Z3 whose range is contained in the set I = {1, 2, . . . , 2p}. Choose a fixed vertex x in Z3 and for each
i ∈ I, let Ai be the i−packing in Z3 consisting of all the vertices in Z3 labeled i by c. Let ε = 388

8400 .
Now observe that for any even integer i ∈ I, if a and b are in Ai and a 6= b, then we have Bri(a) ∩
Bri(b) = ∅ where ri = i

2 . Thus by Lemma 11, there is an integer Mi such that if M is an integer with
M ≥Mi, then

|Ai ∩BM (x)|
|BM (x)|

<
3

4r3i + 6r2i + 8ri + 3
+

ε

2ri+1
.
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Furthermore, for any odd integer i ∈ I, if a and b are in Ai and a 6= b then by Lemma 9 we see that
E(Bri(a)) ∩ E(Bri(b)) = ∅ where ri = i+1

2 . Thus, by Lemma 12, there is an integer Mi such that if
M is an integer with M ≥Mi, then

|Ai ∩BM (x)|
|BM (x)|

<
3

4r3i + 2ri
+

ε

2ri+1
.

Set K = max
i∈I
{Mi}. Since we are dealing with a packing coloring of the whole of Z3, the fraction f

of labeled vertices in BK(x) is equal to 1. On the other hand we can strictly bound this fraction as
follows.

f =

2p∑
i=1

|Ai ∩BK(x)|
|BK(x)|

=

p∑
i=1

|A2i ∩BK(x)|
|BK(x)|

+

p∑
i=1

|A2i−1 ∩BK(x)|
|BK(x)|

<

p∑
i=1

(
3

4i3 + 6i2 + 8i+ 3
+

ε

2i+1
) +

p∑
i=1

(
3

4i3 + 2i
+

ε

2i+1
)

<

∞∑
i=1

(
3

4i3 + 6i2 + 8i+ 3
+

ε

2i+1
) +

∞∑
i=1

(
3

4i3 + 2i
+

ε

2i+1
)

<

2∑
i=1

3

4i3 + 6i2 + 8i+ 3
+

2∑
i=1

3

4i3 + 2i
+ 2

∞∑
i=3

3

4i3
+ 2

∞∑
i=1

ε

2i+1

<

2∑
i=1

3

4i3 + 6i2 + 8i+ 3
+

2∑
i=1

3

4i3 + 2i
+

∫ ∞
2

3dt

2t3
+ ε

= (
1

7
+

1

25
) + (

1

2
+

1

12
) +

3

16
+

388

8400
=

8399

8400
< 1,

a contradiction.
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