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Abstract

A set S of vertices in a graph G is a 2-dominating set if every vertex of G not in S is
adjacent to at least two vertices in S. The 2-domination number γ2(G) is the minimum
cardinality of a 2-dominating set in G. The annihilation number a(G) is the largest
integer k such that the sum of the first k terms of the nondecreasing degree sequence of
G is at most the number of edges in G. The conjecture-generating computer program,
Graffiti.pc, conjectured that γ2(G) ≤ a(G) + 1 holds for every connected graph G. It
is known that this conjecture is true when the minimum degree is at least 3. The
conjecture remains unresolved for minimum degree 1 or 2. In this paper, we prove that
the conjecture is indeed true when G is a tree, and we characterize the trees that achieve
equality in the bound. It is known that if T is a tree on n vertices with n1 vertices of
degree 1, then γ2(T ) ≤ (n + n1)/2. As a consequence of our characterization, we also
characterize trees T that achieve equality in this bound.
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1 Introduction

In this paper, we study upper bounds on the 2-domination numbers of trees in terms of
their annihilation numbers. For k ≥ 1, a k-dominating set of a graph G is a set S of

vertices in G such that every vertex outside S is adjacent to at least k vertices in S. Every
graph G has a k-dominating set, since V (G) is such a set. The k-domination number of G,

denoted by γk(G), is the minimum cardinality of a k-dominating set of G. In particular, a
1-dominating set is a dominating set, and the 1-domination number γ1(G) is the domination

number γ(G). A k-dominating set of G of cardinality γk(G) is called a γk-set of G. The
concept of a k-dominating set was first introduced by Fink and Jacobson in 1985 [6] and is

now well-studied in the literature. We refer the reader to the two books on domination by
Haynes, Hedetniemi, and Slater [9, 10], as well as to the excellent survey on k-domination

in graphs by Chellali, Favaron, Hansberg, and Volkmann [2].

As explained in [11], the annihilation number of a graph was first introduced by Pepper

in [13]. Originally it was defined in terms of a reduction process on the degree sequence
similar to the Havel-Hakimi process (see [7, 14]). In [13], Pepper showed an equivalent

way to define the annihilation number, this is the version we will use in this work. The
annihilation number of a graph G, denoted a(G), is the largest integer k such that the sum
of the first k terms of the degree sequence of G arranged in nondecreasing order is at most

the number of edges. That is if d1, . . . , dn is the degree sequence of a graph G with m edges,
where d1 ≤ · · · ≤ dn, then the annihilation number of G is the largest integer k such that
∑k

i=1 di ≤ m or, equivalently, the largest integer k such that
∑k

i=1 di ≤
∑n

i=k+1 di.

The conjecture-generating computer program, Graffiti.pc, made the following conjecture

relating the 2-domination number of a graph and its annihilation number.

Conjecture 1. ([5]) If G is a connected graph with at least 2 vertices, then γ2(G) ≤ a(G)+1.

It is known that Conjecture 1 is true when the minimum degree is at least 3. Conjecture 1

is still unresolved when the minimum degree of G is 1 or 2. Proving the conjecture for trees
may be the most interesting case. Our aim in this paper is threefold: First to prove that

Conjecture 1 is indeed true for trees. Secondly to characterize the extremal trees achieving
equality in the upper bound of Conjecture 1. Thirdly to characterize trees with the largest

possible 2-domination number.

1.1 Notation

In this paper, the word “graph” is used to denote a “simple graph” with no loops or

multiple edges. For notation and graph theory terminology not defined herein, we in general

2



follow [9]. We write V (G) and E(G) for the vertex set and edge set of a graph G. Usually,
we use n for the number of vertices and m for the number of edges. We write NG(v) and

dG(v) for the neighborhood and degree of a vertex v ∈ V (G). We extend the notion of
neighborhood to sets by letting NG(S) =

⋃

v∈S N (v) for any S ⊆ V (G). If the graph G is

clear from the context, we simply write N (v), N (S), and d(v) rather than NG(v), NG(S),
and dG(v), respectively. The minimum degree among the vertices of G is denoted by δ(G).
The matching number is the maximum size of a matching in G and is denoted by α′(G). A

vertex of degree 1 is called a leaf, its neighbor is a support vertex, and its incident edge is
a pendant edge. We denote the set of leaves of a tree T by L(T ). A star is a tree with at

most one non-leaf vertex. The corona of a graph G, denoted G ◦ K1, is formed from G by
adding for each v ∈ V (G), a new vertex v′ and the pendant edge vv′.

For a set S ⊆ V (G), we let G[S] denote the subgraph induced by S. The graph obtained
from G by deleting the vertices in S and all edges incident with vertices in S is denoted by

G − S. In the special case when S = {v}, we also denote G − S by G − v for simplicity.
For a set S ⊆ V (G) and v ∈ V (G), we denote by dS(v) the number of all vertices in S

that are adjacent to v. In particular, when S = V (G), we note dS(v) = d(v). For a subset
S ⊆ V (G), we define

Σ(S, G) =
∑

v∈S

dG(v).

For a graph G with m edges, we define an a-set of G to be a (not necessarily unique) set
S of vertices in G such that |S| = a(G) and

∑

v∈S dG(v) ≤ m. We define an amin-set of G

to be an a-set S of G, such that Σ(S, G) is a minimum. Hence if S is an amin-set of G, then
S is a set of (not necessarily unique) vertices corresponding to the first a(G) vertices in the

nondecreasing degree sequence of G.

In order to prove Conjecture 1 for trees, we introduce a slight variation of the annihilation
number of a graph. We define the upper annihilation number of a graph G, denoted a∗(G),
to be the largest integer k such that the sum of the first k terms of the degree sequence of

G arranged in nondecreasing order is at most |E(G)|+ 1. That is if d1, . . . , dn is the degree
sequence of a graph G with m edges, where d1 ≤ · · · ≤ dn, then the upper annihilation

number of G is the largest integer k such that
∑k

i=1 di ≤ m + 1. We define an a∗min-set of
G to be a (not necessarily unique) set S∗ of vertices in G such that |S∗| = a∗(G) and S∗

corresponds to the first a∗(G) vertices in the nondecreasing degree sequence of G.

1.2 Known Results and Observations

In their introductory paper on k-domination, Fink and Jacobson [6] established the following

lower bound on the k-domination number of a tree.

Theorem 1. ([6]) For k ≥ 1, if T is a tree with n vertices, then γk(T ) ≥ ((k−1)n+1)/k.

As a special case of Theorem 1, if T is a tree with n vertices, then γ2(T ) ≥ (n + 1)/2.
The following upper bound on the 2-domination number of a tree was observed in several

papers.
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Theorem 2. ([4, 8, 12]) If T is a tree with n vertices and n1 leaves, then γ2(T ) ≤ (n+n1)/2.

Caro and Roditty [1] and Stracke and Volkmann [15] established the following upper
bound on the k-domination number of a graph.

Theorem 3. ([1, 15]) For every graph G with n vertices and every integer k ≥ 1, if

δ(G) ≥ 2k − 1, then γk(G) ≤ bn/2c.

In the special case when k = 2, the result of Theorem 3 states that if G is a graph with

n vertices and δ(G) ≥ 3, then γ2(G) ≤ bn/2c. Since α′(G) ≤ bn/2c for any graph G with n
vertices, this result was improved in the following theorem.

Theorem 4. ([3]) Let k be a positive integer. If G is any graph with δ(G) ≥ 2k − 1, then

γk(G) ≤ α′(G).

We remark that both Theorems 2 and 3 follow from a more general result in Hansberg
et al. [8].

Theorem 5. ([8]) If G is an r-partite graph with n vertices and k is a positive integer, then

γk(G) ≤
1

r
((r − 1)n + |x ∈ V (G): dG(x) ≤ k − 1|) .

Before we continue, a definition is in order.

Definition 1. ([12]) A set of vertices is j-independent if each vertex of the set has at

most j − 1 neighbors in the set. The j-independence number of G, denoted αj(G), is
the cardinality of a largest j-independent set in G (when j = 1, this is just the standard

independence number and a 1-independent set is a standard independent set).

As can be seen in [12], Theorems 2, 3 and 5 all follow as corollaries of the following result.

Theorem 6. ([12]) Given positive integers j, k, m, and n, let G be a graph with n vertices,

and let Hm be the subgraph of G induced by the vertices having degree at least m. If

m = k + j − 1, then γk(G) ≤ n − αj(Hm).

Pepper was the first to observe that if G is an n-vertex graph with n ≥ 2, then a(G) ≥
bn/2c. This observation of Pepper’s as well as Theorem 3 when k = 2, lead to the following

observation due to West.

Observation 7. ([16]) Conjecture 1 is true if δ(G) ≥ 3.

We remark that Pepper constructed an infinite family F of graphs G for which δ(G) = 2
and γ2(G) = a(G) + 1, as follows. Let F be the family of graphs formed from r disjoint

copies of C5 in the following manner. Add to this graph a matching with r−1 edges, where
each edge of the matching joins two 5-cycles and on each 5-cycle the vertices incident to the

matching are nonadjacent. When r = 3, an example of a graph in the family F is shown in
Figure 1. As observed by Pepper, if G ∈ F , then G has 6r − 1 edges, with a(G) = 3r − 1

and γ2(G) = 3r.
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Figure 1: A graph G ∈ F .

2 The Family T

For integers r and s such that r, s ≥ 1, a double star S(r, s) is a tree with exactly two
vertices that are not leaves, one of which is adjacent to r leaves and the other to s leaves. In

order to state our main result, we construct a family T of trees as follows. For any integer
j greater than 1, let T2,j denote the double star S(1, j − 1).

Definition 2. (The Family T ) For integers i and j, where 2 ≤ i ≤ j, we construct the

family Ti,j of trees defined recursively as follows. Initially we let T2,j ∈ T2,j. For every tree
T ∈ Ti,j, do the following.

O1: If v ∈ V (T ) is a leaf in T , then add the set {t, s1, s2, . . . , s`} of ` + 1 new vertices to
V (T ), where ` ≥ i − 1 is arbitrary, and add the edge ts1 and the edges vsi for all

i = 1, 2, . . . , ` to E(T ). Add the resulting tree to the family Ti,min{j,`+1}.

O2: If v ∈ V (T ) has dT (v) ≤ min{i, j − 1}, then add the set {t, s1, s2, . . . , s`} of ` + 1 new
vertices to V (T ), where ` ≥ max{dT (v) + 1, i} − 1 is arbitrary, and add the edge tv

and the edges sit for all i = 1, 2, . . . , ` to E(T ). Add the resulting tree to the family
Tmax{dT (v)+1,i},min{j,`+1}.

For an integer i ≥ 2, let

Ti =
⋃

j≥i

Ti,j and let T = {K2} ∪





⋃

i≥2

Ti



 .

Figure 2 illustrates the operations O1 and O2 on the tree T2,5.

We remark that for 2 ≤ i ≤ j, the family Ti,j is defined as a set of trees. Further, since

it is the union of a set of trees, Ti is also a set of trees, as is the family T . In [16] it is
mentioned that Pepper found an infinite family of trees for which the 2-domination number

equals the upper bound of Conjecture 1. This is the family of trees formed by taking any
tree, forming the corona of that tree and then forming the corona of the resulting tree. We

remark that Pepper’s family of trees is contained in our family T constructed above.

3 Main Results

Observation 7 states that Conjecture 1 is true when the minimum degree is at least 3.

However, as remarked earlier Conjecture 1 remains unresolved when δ(G) ∈ {1, 2}. We
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(a) T2,5 (b) Operation O2 (c) Operation O1

v
t

s1

s2

s3

s3

s2

t s1

v

Figure 2: Operations O1 and O2 applied to the tree T2,5.

prove that Conjecture 1 is true for trees and we characterize the trees achieving equality

in Conjecture 1. We shall prove the following results. A proof of Theorem 8 is given in
Section 5.

Theorem 8. For a tree T , the following hold.

(a) γ2(T ) ≤ a∗(T ).

(b) γ2(T ) ≤ a(T ) + 1.
(c) γ2(T ) = a(T ) + 1 if and only if T ∈ T .

Recall that by Theorem 2, if T is a tree with n vertices and n1 leaves, then γ2(T ) ≤

(n + n1)/2. As a consequence of our main result, namely Theorem 8, we characterize the
trees achieving equality in this bound. Recall that T2 =

⋃

T2,j, where the union is taken
over all integers j with j ≥ 2. A proof of Theorem 9 is given in Section 6.

Theorem 9. If T is a tree with n vertices and n1 leaves, then γ2(T ) ≤ (n + n1)/2, with

equality if and only if T ∈ T2 ∪ {K2}.

4 Preliminary Results

In this section, we establish some preliminary results that we will need when proving our

main results. Recall that for a subset S ⊆ V (G), we define Σ(S, G) =
∑

v∈S dG(v). We
begin with the following trivial observation.

Observation 10. For an a∗min-set S∗ in a tree T with m edges, the following hold.

(a) If Σ(S∗, T ) ≤ m, then a∗(T ) = a(T ).

(b) If Σ(S∗, T ) = m + 1, then a∗(T ) = a(T ) + 1.

Proof. For an a∗min-set S∗ in a tree T with m edges, |S∗| = a∗(T ) and Σ(S∗, T ) ≤ m + 1.
By definition, a∗(T ) ≥ a(T ). If Σ(S∗, T ) ≤ m, then a(T ) ≥ |S∗| = a∗(T ), implying that

a∗(T ) = a(T ), which establishes Part (a). If Σ(S∗, T ) = m+1, then let v ∈ S∗ be arbitrary
and note that Σ(S∗ \ {v}, T ) ≤ m, and so a(T ) ≥ |S∗ \ {v}| = |S∗| − 1 = a∗(T ) − 1.

Since S∗ is a set of vertices corresponding to the first a∗(T ) vertices in the nondecreasing
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degree sequence of T and Σ(S∗, T ) = m + 1, we have a(T ) ≤ a∗(T ) − 1. Consequently,
a∗(T ) = a(T ) + 1. 2

As a consequence of Observation 10, if T is a tree then a∗(T ) = a(T ) or a∗(T ) = a(T )+1.
We next establish some useful properties of trees that belong to the family T \ {K2}. We

shall need the following notation. For a set S ⊆ V (G), we define

∆S(G) = max{dG(v) | v ∈ S}

and
δS(G) = min{dG(v) | v ∈ V (G) \ S}

Thus, ∆S(G) is the maximum degree in G among all the vertices in S, while δS(G) is the
minimum degree in G among all the vertices that do not belong to S.

Lemma 11. Let T ′ ∈ T \ {K2}, and so T ′ ∈ Ti,j for some integers j ≥ i ≥ 2. If S ′ is an

amin-set in T ′ and S∗′ is an a∗min-set in T ′, then the following hold.

(a) δS′(T ′) = i and δS∗′(T ′) = j.

(b) ∆S′(T ′) ≤ i and ∆S∗′(T ′) = i.
(c) Σ(S∗′, T ′) = m(T ′) + 1.

(d) a∗(T ′) = a(T ′) + 1.
(e) γ2(T

′) = a∗(T ′).

Proof. We proceed by induction on the minimum number k of operations needed to

construct a tree T ′ in the family T ′ ∈ T \ {K2}. When k = 0, we have T ′ = T2,j ∈ T2,j

for some j ≥ 2. Let u and v denote the two vertices of T ′ that are not leaves, where u

has one leaf neighbor and v has j − 1 leaf neighbors. Now γ2(T
′) = j + 1, a(T ′) = j and

a∗(T ′) = j + 1. In particular, a∗(T ′) = a(T ′) + 1 and γ2(T
′) = a∗(T ′). The set S ′ = L(T ′)

of leaves of T ′ is the unique amin-set in T ′, implying that dT ′(u) = δS′(T ′) = 2 = i and

∆S′(T ′) = 1 < i. Furthermore, the set L(T ′) ∪ {u} is the unique a∗min-set in T ′, unless
j = 2, in which case L(T ′) ∪ {v} is also an a∗min-set in T ′. Hence if S∗′ is an a∗min-set in T ′,

then dT ′(v) = δS∗′(T ′) = j, dT ′(u) = ∆S∗′(T ′) = 2 = i, and Σ(S∗′, T ′) = m(T ′) + 1 = j + 2.
Hence the tree T ′ satisfies properties (a)–(e). This establishes the base case when k = 0.

Suppose that k ≥ 0, and let T ∈ T \ {K2} be constructed using k operations. Thus,
T ∈ Ti,j for some integers j ≥ i ≥ 2. For the inductive hypothesis, assume that the tree

T satisfies properties (a)–(e). Let T ′ be obtained from T by using Operation O1 or O2

in Definition 2, and so T ′ is constructed using k + 1 operations. We show that properties

(a)–(e) also hold for the tree T ′, which will complete the proof by induction. We consider
two possibilities.

Case 1. T ′ is obtained from T by applying Operation O1. We adopt the notation used
in Definition 2. Let LT ′ = {s2, . . . , s`} ∪ {t}. Let S∗ be a a∗min-set in T . Let z be a vertex

in S∗ of highest possible degree in T , and so dT (z) = ∆S∗(T ). By Property (b), we have
dT (z) = i ≥ 2, and by Property (c) we deduce that the set S∗\{z} is an amin-set in T . Since
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v is a leaf in T , z ∈ S∗, and dT (z) > 1, we note v ∈ S∗. Let S∗′ = (S∗ ∪ LT ′ ∪ {s1}) \ {v}.
Applying Properties (a)–(e) for the tree T , we have

Σ(S∗′, T ′) = Σ(S∗ \ {v}, T ) + ` + 2

= Σ(S∗, T ) + ` + 1
= (m(T ) + 1) + ` + 1

= m(T ′) + 1.

By Property (b), all vertices in S∗ have degree at most i in T . Since the degrees of

vertices in S∗ \ {v} remain unchanged in T ′ and since i ≥ 2, all vertices in S∗′ have degree
at most i in T ′. Recall that z ∈ S∗ and dT (z) = i. Since v 6= z, we have z ∈ S∗′ and

dT ′(z) = i, implying ∆S∗′(T ′) = i.

By Property (a), δS∗(T ) = j. Hence since V (T ′) \ S∗′ = (V (T ) \ S∗) ∪ {v}, we have

δS∗′(T ′) = min{δS∗(T ), dT ′(v)} = min{j, ` + 1}.

Since T ′ ∈ Ti,min{j,`+1}, it follows that the second statement of property (a) is satisfied.

In particular, since `+1 ≥ i and j ≥ i, every vertex in T ′ that does not belong to the set S∗′

has degree at least i in T ′. As observed earlier, Σ(S∗′, T ′) = m(T ′)+1. Furthermore, every
vertex in S∗′ has degree at most i in T ′, and there exists a vertex in S∗′ of degree exactly i
in T ′. Therefore, the set S∗′ is an a∗min-set in T ′, and so a∗(T ′) = |S∗′| = |S∗|+` = a∗(T )+`.

As shown earlier, ∆S∗′(T ′) = i and δS∗′(T ′) = min{j, `+ 1}. Since S∗′ is defined as a set of
vertices corresponding to the first a∗(T ′) vertices in the nondecreasing degree sequence of T ′,

and Σ(S∗′, T ′) = m(T ′) + 1, we have a(T ′) ≤ a∗(T ′)− 1. Consequently, by Observation 10,
a∗(T ′) = a(T ′) + 1. By our properties of the set S∗′, it follows that if S ′ is an amin-set in

T ′, then δS′(T ′) = i, so ∆S′(T ′) ≤ i.

It remains to show that γ2(T
′) = a∗(T ′). Let D be a γ2-set of T ′. Since the set D contains

all leaves of T ′, we have LT ′ ⊂ D. If s1 ∈ D, then we can replace s1 in D by v. Hence we may
assume that s1 /∈ D. In order to 2-dominate s1, we have v ∈ D. Therefore the set D \ LT ′

is a 2-dominating set in T , so γ2(T ) ≤ |D| − |LT ′ | = γ2(T
′) − `. Conversely, noting that v,

which is a leaf in T , belongs to every 2-dominating set of T , we have that adding the set LT ′

to an arbitrary γ2-set of T produces a 2-dominating set of T ′, and so γ2(T
′) ≤ γ2(T ) + `.

Consequently, γ2(T
′) = γ2(T )+`. Since T satisfies Property (e), we have γ2(T ) = a∗(T ). As

established earlier, a∗(T ′) = a∗(T )+ `. Therefore, γ2(T
′) = γ2(T )+ ` = a∗(T )+ ` = a∗(T ′).

Hence in Case 1, Properties (a)–(e) hold for the tree T ′.

Case 2. T ′ is obtained from T by applying Operation O2. We once again adopt the

notation used in Definition 2. In this case let LT ′ = {s1, s2, . . . , s`}. By definition, T ′ ∈ Ti′,j′ ,
where i′ = max{dT (v) + 1, i} and j ′ = min{j, ` + 1}. The definition of ` yields ` ≥ i′ − 1.

Let S∗ be a a∗min-set in T . By the inductive hypothesis applied to the tree T , we have
Σ(S∗, T ) = m(T ) + 1 and ∆S∗(T ) = i. This implies that S∗ contains at least one vertex

of degree i. By the choice of v, we have dT (v) ≤ i. If v /∈ S∗, then dT (v) = i and we can
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simply replace a vertex of S∗ of degree i in T with v. Hence we may choose S∗ so that
v ∈ S∗. Let S∗′ = S∗ ∪ LT ′ . Since v ∈ S∗, we have

Σ(S∗′, T ′) = (Σ(S∗, T ) + 1) + `

= (m(T ) + 1) + ` + 1
= m(T ′) + 1.

We next consider the degrees of the vertices of S∗′ in the tree T ′. If x ∈ LT ′ , then

dT ′(x) = 1. If x ∈ S∗, then either x = v, in which case dT ′(v) = dT (v) + 1, or x 6= v, in
which case dT ′(x) = dT (x) ≤ ∆S∗(T ) = i. Hence, ∆S∗′(T ′) = max{dT (v) + 1, ∆S∗(T )} =

max{dT (v) + 1, i}; that is, ∆S∗′(T ′) = i′. Thus all vertices in S∗′ have degree at most i′

in T ′. By Property (a), δS∗(T ) = j. Hence since V (T ′) \ S∗′ = (V (T ) \ S∗) ∪ {t}, we have

δS∗′(T ′) = min{δS∗(T ), dT ′(t)} = min{j, ` + 1} = j ′.

We also note that by the choice of v, we have j ≥ dT (v) + 1. Further, j ≥ i, and so
j ≥ max{dT (v) + 1, i} = i′. Moreover, ` + 1 ≥ i′. Therefore,

j ′ = min{j, ` + 1} ≥ i′.

Hence all vertices in T ′ that do not belong to the set S∗′ have degree at least i′ in T ′. As
observed earlier, all vertices in S∗′ have degree at most i′ in T ′, and there exists a vertex in

S∗′ of degree exactly i′ in T ′. Thus since Σ(S∗′, T ′) = m(T ′) + 1, the set S∗′ is an a∗min-set
in T ′, and so a∗(T ′) = |S∗′| = |S∗| + ` = a∗(T ) + `.

As shown earlier, ∆S∗′(T ′) = i′ and δS∗′(T ′) = j ′. Since S∗′ is defined as a set of vertices
corresponding to the first a∗(T ′) vertices in the nondecreasing degree sequence of T ′ and

Σ(S∗′, T ′) = m(T ′) + 1, we have a(T ′) ≤ a∗(T ′) − 1. Consequently, by Observation 10,
a∗(T ′) = a(T ′) + 1, thus proving property (d). Let S ′ be an amin-set in T ′. Since a∗(T ′) =

a(T ′) + 1 and ∆S∗′(T ′) = i′, it follows that S∗′ has exactly one more vertex of degree i′

than S ′ does. Hence δS′(T ′) = i′, implying that ∆S′(T ′) ≤ i′.

It remains to show that γ2(T
′) = a∗(T ′). Let D be a γ2-set in T ′. Since the set D contains

all leaves of T ′, we have LT ′ ⊂ D. Note that t is not a leaf in T ′ and NT ′(t) = LT ′ ∪ {v}.

If t ∈ D, then we can replace t in D by v. Hence we may assume t /∈ D. Therefore the
set D \ LT ′ is a 2-dominating set in T , so γ2(T ) ≤ |D| − |LT ′ | = γ2(T

′) − `. Conversely,

adding the set LT ′ to an arbitrary γ2-set of T produces a 2-dominating set of T ′, and so
γ2(T

′) ≤ γ2(T ) + `. Consequently, γ2(T
′) = γ2(T ) + `. Since T satisfies Property (e),

we have γ2(T ) = a∗(T ). As established earlier, a∗(T ′) = a∗(T ) + `. Therefore γ2(T
′) =

γ2(T ) + ` = a∗(T ) + ` = a∗(T ′). Hence in Case 2, Properties (a)–(e) hold for the tree T ′.

This completes the proof of Lemma 11. 2
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5 Proof of Theorem 8

In this section, we present a proof of Theorem 8. Recall the statement of the theorem.
Since our proof by induction involves constructing a tree T ′ from a tree T ∈ T we state

Theorem 8 in terms of T ′.

Theorem 8. For a tree T ′, the following hold.

(a) γ2(T
′) ≤ a∗(T ′).

(b) γ2(T
′) ≤ a(T ′) + 1.

(c) γ2(T
′) = a(T ′) + 1 if and only if T ′ ∈ T .

Proof. We proceed by induction on n, the number of vertices of the tree T ′. When

n = 1, we have γ2(T
′) = 1 = a∗(T ′) = a(T ′) and T ′ 6∈ T . When n = 2, we have

γ2(T
′) = 2 = a∗(T ′) = a(T ′) + 1 and T ′ ∈ T . This establishes the base cases. For the

induction hypothesis, consider n ≥ 3 and assume that every tree T with less than n vertices
satisfies Properties (a), (b) and (c) in the statement of the theorem. Let T ′ be a tree with

n vertices.

If T ′ is a star K1,s with s ≥ 2, then γ2(T
′) = s = a∗(T ′) = a(T ′) and T ′ 6∈ T . Hence we

may assume that T ′ is not a star, for otherwise the tree T ′ satisfies the desired properties (a),
(b) and (c) and we are done. Hence no vertex dominates all other vertices in the graph. Let

r be any vertex in T ′ and call r the root of T ′. We now consider the tree rooted at r. (We
note that r is not necessarily a leaf in T ′.) Let x be a vertex in T ′ at maximum distance

from r. Since T ′ is not a star, x is not a neighbor of r. Thus, x 6∈ NT ′(r). By our choice of x,
the vertex x is a leaf in T ′. Let y be the unique neighbor of x. Since no vertex dominates

all other vertices in T ′, we have y 6= r and dT ′(y) ≥ 2. Let z be the vertex adjacent to y on
the unique path from r to y in T ′; z is the parent of y in T ′ when T ′ is rooted at r. Since x
is a vertex at maximum distance from r, every neighbor of y other than z must be a leaf.

We now consider the following two cases, which exhaust all possibilities.

Case 1: dT ′(y) ≥ 3. Let Q denote the set of all leaves adjacent to y, and so Q = N (y)\{z}.

Let T = T ′ − (Q∪ {y}) and note that |E(T ′)| = |E(T )|+ |Q|+ 1. Let S be a a∗min-set in T ,
and so Σ(S, T ) ≤ |E(T )|+ 1. Letting S1 = S ∪ Q, we have

Σ(S1, T
′) ≤ (Σ(S, T ) + 1) + |Q|

≤ |E(T )|+ 1 + |Q| + 1

= |E(T ′)|+ 1,

so a∗(T ′) ≥ |S1| = |S|+ |Q| = a∗(T )+ |Q|. Every 2-dominating set in T can be extended to
a 2-dominating set in T ′ by combining it with Q, so γ2(T

′) ≤ γ2(T ) + |Q|. Since T satisfies
Properties (a), (b) and (c), we now have

γ2(T
′) ≤ γ2(T ) + |Q|

≤ a∗(T ) + |Q|
≤ (a∗(T ′) − |Q|) + |Q|

= a∗(T ′).
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Hence, T ′ satisfies Property (a). As a consequence of Observation 10, a∗(T ′) ≤ a(T ′)+1,
and so T ′ satisfies Property (b). It remains to show that T ′ satisfies Property (c). By
Lemma 11, if T ′ ∈ T (and still n ≥ 3), then γ2(T

′) = a(T ′)+1, as desired. Hence it suffices

to show that if γ2(T
′) = a(T ′) + 1, then T ′ ∈ T . Suppose then that γ2(T

′) = a(T ′) + 1.

Let A be an amin-set in T and let A1 = A ∪ Q. We have

Σ(A1, T
′) ≤ (Σ(A, T ) + 1) + |Q|

≤ |E(T )|+ |Q|+ 1
= |E(T ′)|,

so a(T ′) ≥ |A1| = |A| + |Q| = a(T ) + |Q|. If γ2(T ) ≤ a(T ), then γ2(T
′) ≤ γ2(T ) + |Q| ≤

a(T ) + |Q| ≤ a(T ′), a contradiction to our assumption of γ2(T
′) = a(T ′) + 1. Therefore,

γ2(T ) = a(T ) + 1. Since T satisfies Property (c) by the inductive hypothesis, we have

T ∈ T . If T = K2, then T ′ = T2,d(y)−1 ∈ T . Hence we may assume T 6= K2, for otherwise
the desired result follows. Thus, T ∈ Ti,j for some i and j, where 2 ≤ i ≤ j.

Suppose dT (z) > min{i, j − 1}. Recall that S is an a∗min-set in T . We show that we may
assume z 6∈ S. Since T ∈ Ti,j, the tree T satisfies Lemma 11. In particular, every vertex in

S has degree at most i in T . Hence if min{i, j−1} = i, then dT (z) > i, implying that z 6∈ S,
as desired. If min{i, j − 1} < i, then i = j and dT (z) > min{i, j − 1} = i − 1, implying

dT (z) ≥ i. In this case, if z ∈ S, then dT (z) = i. By Parts (a) and (b) in Lemma 11, we
have δS(T ′) = i and ∆S(T ′) = i. Therefore some vertex z′ of degree i in T ′ does not belong
to the set S. Replacing z in S with z′ produces a new a∗min-set in T that does not contain z.

Hence we may assume z 6∈ S. Letting S∗ = S ∪ Q, we have

Σ(S∗, T ′) ≤ Σ(S, T ) + |Q|
≤ (|E(T )|+ 1) + |Q|
= |E(T ′)|,

implying a(T ′) ≥ |S∗| = |S|+|Q| = a∗(T )+|Q| = a(T )+1+|Q|. Now γ2(T
′) ≤ γ2(T )+|Q| =

a(T ) + 1 + |Q| ≤ a(T ′), a contradiction. Hence, dT (z) ≤ min{i, j − 1}.

Let i′ = max{dT (z)+1, i}, and suppose dT ′(y) < i′. If i′ = dT (z)+1, then dT ′(y) ≤ dT (z),
while if i′ = i, then dT ′(y) < i. Hence, dT ′(y) ≤ dT (z) or dT ′(y) < i.

Suppose dT ′(y) ≤ dT (z). If z /∈ S, then since dT (z) ≤ i and ∆S(T ) = i, we can simply
replace a vertex in S of degree i in T with z. Hence in this case we may choose S to contain

z. Letting S∗ = (S ∪ Q ∪ {y}) \ {z}, we have

Σ(S∗, T ′) ≤ Σ(S \ {z}, T ) + dT ′(y) + |Q|

= Σ(S, T )− dT (z) + dT ′(y) + |Q|
≤ Σ(S, T ) + |Q|
= (|E(T )|+ 1) + |Q|

= |E(T ′)|,

implying a(T ′) ≥ |S∗| = |S| + |Q| = a∗(T ) + |Q| = a(T ) + 1 + |Q|. Now then γ2(T
′) ≤

γ2(T ) + |Q| = a(T ) + 1 + |Q| ≤ a(T ′), a contradiction. Hence, dT ′(y) > dT (z), and so
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dT ′(y) < i. In this case, let z′ be a vertex in S of degree i and note that dT ′(y) ≤ dT (z′)−1.
Therefore letting S∗ = (S ∪ Q ∪ {y}) \ {z′}, we have

Σ(S∗, T ′) ≤ Σ(S \ {z′}, T ) + dT ′(y) + |Q|
= (Σ(S, T ) + 1 − dT (z′)) + dT ′(y) + |Q|

≤ Σ(S, T ) + |Q|
= (|E(T )|+ 1) + |Q|

= |E(T ′)|,

implying as before that γ2(T
′) ≤ a(T ′), a contradiction. Therefore, dT ′(y) ≥ i′.

Recall that i′ = max{dT (z) + 1, i}. We now let j ′ = min{dT ′(y) − 1, j}. We have shown

that dT (z) ≤ min{i, j − 1} and dT ′(y) ≥ i′. Thus, by Definition 2, the tree T ′ is obtained
from the tree T by applying Operation O2. Further, T ′ ∈ Ti′,j′ ⊆ T , as desired. Thus the

tree T ′ satisfies Property (c). This completes the proof of Case 1.

Case 2: dT ′(y) = 2. Let Y = {y1, y2, . . . , y`} be the children of z in T ′ when T ′ is rooted
at r. Renaming vertices, if necessary, we may assume that y = y1. By Case 1, we may

assume 1 ≤ d(yi) ≤ 2 for all yi ∈ Y , for otherwise T ′ ∈ T , as desired. We now consider the
following two subcases.

Subcase 2a: There exists a vertex in Y \ {y1} of degree 2 in T ′. Renaming vertices, if
necessary, we may assume that dT ′(y2) = 2. Let x2 be the neighbor of y2 different from

z. In this case, we consider the tree T = T ′ − {x, y}. Let S be an a∗min-set in T , and
so Σ(S, T ) ≤ |E(T )| + 1. Assume that dT ′(z) = 2. This implies that r = z, T ′ = P5 is

a path on five vertices and γ2(T
′) = 3 = a∗(T ′) = a(T ′). Thus T ′ 6∈ T . Hence we may

assume that r 6= z and consequently dT ′(z) ≥ 3 for otherwise the desired result follows. If

z ∈ S, then let S2 = (S ∪ {x, y}) \ {z} and if z 6∈ S, then let S2 = S ∪ {x}. In both cases,
Σ(S2, T

′) ≤ Σ(S, T ) + 1. Thus since |E(T ′)| = |E(T )|+ 2, we have

Σ(S2, T
′) ≤ Σ(S, T ) + 1

≤ (|E(T )|+ 1) + 1
= |E(T ′)|,

implying that a(T ′) ≥ |S2| = |S|+ 1 = a∗(T ) + 1. Let D be a γ2-set in T . If y2 ∈ D, then
we can simply replace y2 with z. Hence we can choose the set D to contain z. But then

D ∪ {x} is a 2-dominating set of T ′, and so γ2(T
′) ≤ γ2(T ) + 1. By Lemma 11(e), we have

γ2(T ) = a∗(T ), implying that γ2(T
′) ≤ a∗(T ) + 1 ≤ a(T ′) ≤ a∗(T ′). Hence, T ′ satisfies

Properties (a), (b) and (c), which completes the proof of Subcase 2a.

Subcase 2b: Every vertex in Y \ {y1} is a leaf in T ′. In this case, we consider the tree
T = T ′−(Y ∪{x}). Let S be an a∗min-set in T , and so Σ(S, T ) ≤ |E(T )|+1. Since dT (z) ≤ 1,

we can choose S so that z ∈ S. Let S3 = (S ∪Y ∪{x})\{z}. Since |E(T ′)| = |E(T )|+`+1,
we have
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Σ(S3, T
′) = Σ(S \ {z}, T ) + ` + 2

= Σ(S, T ) + ` + 1
≤ (|E(T )|+ 1) + ` + 1

= |E(T ′)| + 1,

implying that a∗(T ′) ≥ |S3| = |S|+ ` = a∗(T )+ `. Let D be a γ2-set in T . Since dT (z) ≤ 1,

we have z ∈ D and therefore (D ∪ (Y ∪ {x})) \ {y} is a 2-dominating set of T ′, implying
that γ2(T

′) ≤ |D| + ` = γ2(T ) + `. By the inductive hypothesis, γ2(T ) ≤ a∗(T ). By

Observation 10, a∗(T ′) ≤ a(T ′) + 1. Hence,

γ2(T
′) ≤ γ2(T ) + `

≤ a∗(T ) + `
≤ a∗(T ′)

≤ a(T ′) + 1.

Hence, T ′ satisfies Property (a) and Property (b). It remains to show that T ′ satisfies

Property (c). By Lemma 11, if T ′ ∈ T (and still n ≥ 3), then γ2(T
′) = a(T ′) + 1, as

desired. Hence it suffices to show that if γ2(T
′) = a(T ′) + 1, then T ′ ∈ T . Suppose

that γ2(T
′) = a(T ′) + 1. In this case, we must have equality throughout the previous

inequality chain. In particular, γ2(T
′) = γ2(T ) + `, γ2(T ) = a∗(T ), a∗(T ) + ` = a∗(T ′) and

a∗(T ′) = a(T ′) + 1.

If T = K1, then T ′ = T2,` ∈ T2,` ⊆ T . Hence we may assume that T 6= K1, for otherwise

T ′ ∈ T as desired. Let A be an amin-set in T . Since dT (z) ≤ 1, we can choose the set A so
that z ∈ A. Let S ′

3 = (A ∪ Y ∪ {x}) \ {z}. Since |E(T ′)| = |E(T )|+ ` + 1, we have

Σ(S ′
3, T

′) = Σ(A \ {z}, T ) + ` + 2
= Σ(A, T ) + ` + 1

≤ |E(T )|+ ` + 1
= |E(T ′)|,

implying that a(T ′) ≥ |S ′
3| = |A|+` = a(T )+`. If γ2(T ) ≤ a(T ), then γ2(T

′) = γ2(T )+` ≤
a(T ) + ` ≤ a(T ′), a contradiction to the assumption that γ2(T

′) = a(T ′) + 1. Therefore,

γ2(T ) = a(T ) + 1. By the inductive hypothesis, T ∈ T . If T = K2, then T ′ = T2,`+1 ∈
T2,`+1 ⊂ T . Hence we may assume T 6= K2, for otherwise the desired result follows. Thus,

T ∈ Ti,j for some i and j, where 2 ≤ i ≤ j.

Suppose that ` ≤ i − 2. Since T ∈ Ti,j, by Lemma 11 there is a vertex w ∈ S such that

dT (w) = i. Since i ≥ 2 and dT (z) = 1, we note w 6= z. If S∗ = (S ∪ Y ∪ {x}) \ {w}, then

Σ(S∗, T ′) = Σ(S \ {w, z}, T ) + dT ′(z) + ` + 2

= (Σ(S, T )− dT (w)− dT (z)) + (` + 1) + ` + 2
= (Σ(S, T )− i − 1) + 2` + 3

≤ (|E(T )|+ 1) + ` + (` + 2 − i)
≤ |E(T )|+ ` + 1
= |E(T ′)|,
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implying that a(T ′) ≥ |S∗| = |S|+ ` = a∗(T ) + `. However as observed earlier, a∗(T ) + ` =
a∗(T ′) and a∗(T ′) = a(T ′)+1, implying that a(T ′) ≥ a∗(T )+ ` = a∗(T ′) = a(T ′)+1, which
is impossible. Therefore ` ≥ i − 1. By Definition 2, the tree T ′ can be obtained from the

tree T by applying Operation O1. Further, T ′ ∈ Ti,min{j,`+1} ⊆ T , as desired. 2

6 Proof of Theorem 9

In this section, we present a proof of Theorem 9. Recall the statement of the theorem.

Theorem 9. If T is a tree with n vertices and n1 leaves, then γ2(T ) ≤ (n + n1)/2, with

equality if and only if T ∈ T2 ∪ {K2}.

Proof. Let T be a tree with n vertices and n1 leaves. By Theorem 2, we have γ2(T ) ≤
(n+n1)/2. Hence it remains to prove that γ2(T ) = (n+n1)/2 if and only if T ∈ T2 ∪{K2}.

First suppose T ∈ T2 ∪{K2}. If T = K2, then γ2(T ) = 2 = (n + n1)/2, as desired. Hence

we may assume that T ∈ T2. Thus, T ∈ T2,j for some integer j ≥ 2. Let S∗ be an a∗min-set in
T . By Lemma 11, we have Σ(S∗, T ) = |E(T )|+1 = n. Furthermore, every vertex in S∗ has
degree 1 or degree 2 in T , and some vertex u in S∗ has degree exactly 2 in T . If some leaf v

is not in S∗, then letting S = (S∗ \ {u})∪{v} yields |S| = |S∗| and Σ(S, T ) = Σ(S∗, T )− 1,
contradicting the minimality of the set S∗. Hence S∗ contains all leaves of T , while every

vertex in S∗ that is not a leaf of T has degree 2 in T . Let x2 be the number of vertices in
S∗ that are not leaves in T . We have, x2 ≥ 1 and n = Σ(S∗, T ) = n1 + 2x2, implying that

a∗(T ) = n1 +x2 = n1 +(n−n1)/2 = (n+n1)/2. By Lemma 11(e), we have γ2(T ) = a∗(T ),
so γ2(T ) = (n + n1)/2, as desired.

Conversely, suppose γ2(T ) = (n + n1)/2. Let S∗ be an a∗min-set in T and let ∆ = ∆(T ).
For i = 1, 2, . . . , ∆, let xi denote the number of vertices in S∗ that have degree i in T . We

have,

∆
∑

i=1

ixi = Σ(S∗, T ) ≤ |E(T )|+ 1 = n, and so
∆
∑

i=2

ixi

2
≤

n − x1

2
.

Therefore,

a∗(T ) =
∆
∑

i=1

xi ≤ x1 +

(

∆
∑

i=2

ixi

2

)

≤ x1 +

(

n − x1

2

)

=
n + x1

2
≤

n + n1

2
. (1)

Hence by Theorem 8 and our supposition that γ2(T ) = (n + n1)/2, we have

n + n1

2
= γ2(T ) ≤ a∗(T ) ≤

n + n1

2
. (2)

Therefore we must have equality throughout (2), and hence throughout (1). Equality

throughout (2) implies that γ2(T ) = a∗(T ). Since 1 < i/2 for i ≥ 3, equality throughout (1)
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implies that xi = 0 for all i with 3 ≤ i ≤ ∆. Further, x1 = n1 and Σ(S∗, T ) = |E(T )|+1 = n.
If a∗(T ) = n1, then every vertex in S∗ is a leaf, so Σ(S∗, T ) = n1 and hence n = n1 and

T = K2. Hence we may assume that at least one vertex in S∗ is not a leaf, for otherwise
the desired result follows. Thus, |S∗| = x1 +x2 and x2 > 0; that is, S∗ contains at least one

vertex of degree 2. Since S∗ is a set of vertices corresponding to the first a∗(T ) vertices in the
nondecreasing degree sequence of T and Σ(S∗, T ) = |E(T )|+ 1, we have a(T ) = a∗(T )− 1.
Hence, γ2(T ) = a∗(T ) = a(T ) + 1, and so, by Theorem 8, T ∈ T . Since x2 > 0, we

have T 6= K2, and so T ∈ Ti,j for some integers i and j with 2 ≤ i ≤ j. However, since
∆S∗(T ) = 2, Lemma 11 implies that T ∈ T2,j for some integer j with j ≥ 2, and so T ∈ T2,

as desired. 2
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