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Abstract

If each minimal dominating set in a graph is a minimum dominating set,
then the graph is called well-dominated. Since the seminal paper on well-
dominated graphs appeared in 1988, the structure of well-dominated graphs
from several restricted classes have been studied. In this paper we give a com-
plete characterization of nontrivial direct products that are well-dominated.
We prove that if a strong product is well-dominated, then both of its factors
are well-dominated. When one of the factors of a strong product is a complete
graph, the other factor being well-dominated is also a sufficient condition for
the product to be well-dominated. Our main result gives a complete characteri-
zation of well-dominated Cartesian products in which at least one of the factors
is a complete graph. In addition, we conjecture that this result is actually a
complete characterization of the class of nontrivial, well-dominated Cartesian
products.
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1 Introduction

A dominating set of a finite graph G is a set D of vertices such that each vertex of
G is within distance 1 of at least one vertex in D. Finding a (set inclusion) minimal
dominating set is straightforward and can be accomplished in linear time by simply
ordering the vertices and then discarding them one at a time if the remaining set still
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dominates the graph. Depending on the graph, the resulting minimal dominating
set may be much larger than the domination number of G, which is the minimum
cardinality among all its dominating sets. On the other hand, for a given graph G and
positive integer k, it is well known that determining whether G has a dominating set
of cardinality at most k is an NP -complete problem. In most applications, finding
the size of a smallest dominating set is the typical goal. Well-dominated graphs
are those for which the above algorithm always finds a dominating set of minimum
cardinality. The seminal paper on well-dominated graphs was by Finbow, Hartnell
and Nowakowski [3]. They characterized the well-dominated graphs of girth at least 5
and showed that the only well-dominated bipartite graphs are those with domination
number one-half their order. Several other groups of authors have studied the concept
of well-dominated graphs within restricted graph classes. See, for example, [12] (block
and unicyclic graphs), [11] (simplicial and chordal graphs), [5] (4-connected, 4-regular
claw-free), and [4] (planar triangulations). In [6] Gözüpek, Hujdurović and Milanič
characterized the well-dominated graphs that are nontrivial lexicographic products.

Our focus in this paper is the class of well-dominated graphs that have a nontrivial
factorization as a Cartesian, direct or strong product. These three graph products
are referred to as the “fundamental products” in the book [7] by Hammack, Imrich
and Klavžar. Along with the lexicographic product, they are the most studied graph
products in the literature.

Anderson, Kuenzel and Rall [1] characterized the direct products that are well-
dominated under the assumption that at least one of the factors has no isolatable
vertices. (A vertex x in a graph X is isolatable if there is an independent set A in X
such that {x} is a component in X −N [A].)

Theorem 1. [1, Theorem 3] Let G and H be nontrivial connected graphs such that
at least one of G or H has no isolatable vertices. The direct product G ×H is well-
dominated if and only if G = H = K3 or at least one of the factors is K2 and the
other factor is a 4-cycle or the corona of a connected graph.

In this paper we complete the characterization of well-dominated direct products by
removing the requirement on isolatable vertices. In fact, we prove that if both factors
of a direct product have order at least 3 and one of them has an isolatable vertex,
then the direct product is not well-dominated. The main result on well-dominated
direct products is then the following theorem.

Theorem 2. Let G and H be connected graphs. The direct product G × H is well-
dominated if and only if G×H = K3×K3, G×H = K2×C4, or G×H = K2×(F�K1)
for a connected graph F .

In the same paper Anderson et al. proved that if a Cartesian product G2H is
well-dominated, then at least one of G or H is well-dominated. In addition, they
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provided a characterization of the well-dominated Cartesian products of triangle-free
graphs. Namely, they proved that the Cartesian product of two connected, triangle-
free graphs of order at least 2 is well-dominated if and only if both factors are complete
graphs of order 2. Here we explore the more general case of well-dominated Cartesian
products in which (at least) one of the factors has girth 3. In particular, we prove
the following characterization of well-dominated graphs of the form Km 2H, and
we conjecture that every well-dominated Cartesian product of nontrivial connected
graphs is isomorphic to one of these.

Theorem 3. Let m be a positive integer with m ≥ 2 and let H be a nontrivial,
connected graph. The Cartesian product Km 2H is well-dominated if and only if
either m 6= 3 and H = Km or m = 3 and H ∈ {K3, P3}.

For the strong product we prove that both factors of a well-dominated strong
product are well-dominated. If one of the factors of a strong product is a complete
graph, then the other factor being well-dominated is also a sufficient condition for the
product to be well-dominated.

Theorem 4. Let n be a positive integer. For any graph H the strong product Kn � H
is well-dominated if and only if H is well-dominated.

The remainder of the paper is organized in the following way. In the next section
we provide the necessary definitions for the remainder of the paper. In Section 3
we settle the relatively straightforward result for strong products. Theorem 2, the
complete characterization of well-dominated direct products, is verified in Section 4.
Proving Theorem 3 is the main task of Section 5. We also derive a number of necessary
conditions on two connected graphs whose Cartesian product is well-dominated, which
leads us to conjecture that the characterization in Theorem 3 captures all connected
well-dominated Cartesian products.

2 Definitions

All graphs in this paper are finite, undirected, simple and have order at least 2. For
a positive integer n, we let [n] = {1, . . . , n}. This set will be the vertex set of the
complete graph of order n. In general, we follow the terminology and notation of
Hammack, Imrich, and Klavžar [7]. The order of a graph G is the number of vertices
in G and is denoted by n(G); G is nontrivial if n(G) ≥ 2. For a vertex v in a
graph G, the open neighborhood N(v) and the closed neighborhood N [v] are defined
by N(v) = {u ∈ V (G) : uv ∈ E(G)} and N [v] = N(v) ∪ {v}. For A ⊆ V (G) we
let N(A) = ∪v∈AN(v) and N [A] = N(A) ∪ A. The subgraph of G induced by A is
denoted by 〈A〉. Any vertex subset D such that N [D] = V (G) is a dominating set of
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G, and D is then a minimal dominating set if no proper subset of D is a dominating
set. The domination number of G is denoted by γ(G) and is the minimum cardinality
among the dominating sets of G. The upper domination number, denoted by Γ(G),
is the largest cardinality of a minimal dominating set of G. A set M ⊆ V (G) is
an independent set if its vertices are pairwise non-adjacent. An independent set is
maximal if it is not a proper subset of an independent set. The cardinalities of a
smallest and a largest maximal independent set in G are denoted by i(G) and α(G),
respectively. Note that a maximal independent set is a dominating set, which gives

γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) . (1)

A graph G is called well-covered if i(G) = α(G) and is well-dominated if γ(G) = Γ(G).
It is clear from (1) that the class of well-dominated graphs is a subclass of the class
of well-covered graphs.

Let G be a graph and let u ∈ A ⊆ V (G). The private neighborhood of u with
respect to A is the set pn[u,A] defined by pn[u,A] = {x ∈ V (G) : N [x] ∩ A = {u}}.
Equivalently, pn[u,A] = N [u] − N [A − {u}]. The vertices in pn[u,A] are called
private neighbors of u with respect to A. The subset A ⊆ V (G) is irredundant if
pn[u,A] 6= ∅ for every u ∈ A. It follows from the definitions that a dominating set
D of G is a minimal dominating set if and only if every vertex in D has a private
neighbor with respect to D; that is, D is irredundant. In this paper we will also
need a more restricted type of private neighbor. The external private neighborhood
of u with respect to A is the set epn[u,A] defined by epn[u,A] = pn[u,A] − {u} =
N(u) − N [A − {u}]. If v ∈ epn[u,A], then v is called an external private neighbor
of u with respect to A. Such a vertex v, if it exists, belongs to V (G) − A, which is
the reason to use the word external. A property related to irredundance, and one
that is important for this paper, is that of being open irredundant. The set A is open
irredundant if every vertex of A has an external private neighbor with respect to A.

A vertex x in a graph G is an isolatable vertex in G if there exists an independent
set I of vertices in G such that x is isolated in the induced subgraph G − N [I] of
G. Concerning the closed neighborhood of an independent set we have the follow-
ing useful fact about well-dominated graphs first observed by Finbow, Hartnell and
Nowakowski. The proof is straightforward and follows from the fact that if M is an
independent set in G and D is a minimal dominating set of G−N [M ], then D ∪M
is a minimal dominating set of G.

Observation 5. [3] If G is a well-dominated graph and M is any independent set of
vertices in G, then G−N [M ] is well-dominated.

Let G and H be finite, undirected graphs. The Cartesian product of G and H,
denoted by G2H, has as its vertex set the Cartesian (set) product V (G)×V (H). The
direct product, denoted G×H, and the strong product, G�H, also have V (G)×V (H)
as their set of vertices. Distinct vertices (g1, h1) and (g2, h2) are adjacent in
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• G2H if either (g1 = g2 and h1h2 ∈ E(H)) or (h1 = h2 and g1g2 ∈ E(G));

• G×H if g1g2 ∈ E(G) and h1h2 ∈ E(H);

• G � H if they are adjacent in G2H or they are adjacent in G×H.

All three of these graph products are associative and commutative. A product
graph is called nontrivial if both of its factors are nontrivial. See [7] for specific
information on these and other graph products. The corona of a graph G, denoted
by G�K1, is the graph of order 2n(G) obtained by adding, for each vertex u of G a
new vertex u′ together with a new edge uu′.

3 Well-dominated strong products

Recall that two vertices (g1, h1) and (g2, h2) are adjacent in the strong product G � H
if one of the following holds.

• g1 = g2 and h1h2 ∈ E(H)

• h1 = h2 and g1g2 ∈ E(G)

• g1g2 ∈ E(G) and h1h2 ∈ E(H)

Nowakowski and Rall [10] established the following relationships between ordinary
domination invariants on strong products.

Proposition 6. [10, Corollary 2.2] If G and H are finite graphs, then

γ(G � H) ≤ γ(G)γ(H) and Γ(G � H) ≥ Γ(G)Γ(H) .

The following corollary follows immediately from Proposition 6.

Corollary 7. Let G and H be finite graphs. If G � H is well-dominated, then G
and H are well-dominated.

The converse of Corollary 7 is not true in general. For example, the 5-cycle is
well-dominated, but

γ(C5 � C5) = 4 < 6 = Γ(C5 � C5) .

However, we are able to show in this paper that if at least one of the factors is a
complete graph, then the strong product of this complete graph and a well-dominated
graph is well-dominated.
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Let D be a dominating set of G � H and let A = {g ∈ V (G) : (g, h) ∈
D for some h ∈ V (H)}. If u ∈ V (G) − A and v ∈ V (H), then from the defini-
tion of the edge structure of the strong product it follows that (u, v) is dominated by
D only if u is dominated by A. Thus, A dominates G and therefore γ(G) ≤ |A| ≤ |D|.
Interchanging the roles of G and H proves the following lemma.

Lemma 8. For all pairs of graphs G and H, we have γ(G � H) ≥ max{γ(G), γ(H)}.

We now proceed to prove Theorem 4, which is restated here.

Theorem 4 Let n be a positive integer. For any graph H the strong product Kn � H
is well-dominated if and only if H is well-dominated.

Proof. Suppose that H is a well-dominated graph. Let D be any minimal dominating
set of Kn � H and let S = {h ∈ V (H) : (i, h) ∈ D for some i ∈ [n]}. Note that for
any u ∈ V (H) and for 1 ≤ i < j ≤ n, we have N [(i, u)] = N [(j, u)]. Since D is an
irredundant set, we infer that |S| = |D|. We claim that S is a minimal dominating
set of H. As in the paragraph preceding Lemma 8 we see that S dominates H. Let
h be any vertex of S and let i ∈ [n] such that (i, h) ∈ D. If (i, h) is isolated in the
subgraph of Kn � H induced by D, then h is isolated in the subgraph of H induced
by S and h ∈ pn[h, S]. On the other hand, if (i, h) 6∈ pn[(i, h), D], then there exists
(k, x) ∈ pn[(i, h), D] such that x /∈ S. Again by definition of the edge structure of the
strong product it follows that x ∈ pn[h, S]. We conclude that S is irredundant in H,
and hence S is a minimal dominating set of H. Therefore, |D| = |S| = γ(H). That
is, all minimal dominating sets of Kn � H have the same cardinality, which implies
that Kn � H is well-dominated.

The converse follows from Corollary 7.

Still unanswered is the following natural question.

Question 1. What properties on the well-dominated graphs G and H are necessary
and sufficient for G � H to be well-dominated?

4 Well-dominated direct products

In this section we complete the characterization of well-dominated direct products.
Throughout we assume that the factors are connected and have order at least 2. We
prove Theorem 2, which we now restate for convenience of the reader.

Theorem 2 Let G and H be connected graphs. The direct product G × H is well-
dominated if and only if G×H = K3×K3, G×H = K2×C4, or G×H = K2×(F�K1)
for a connected graph F .
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It is easy to see that if M is any maximal independent set of G then M × V (H) is
a maximal independent set, and thus also a minimal dominating set, of G × H. If,
in addition, G×H is well-dominated, then it follows that M × V (H) is a minimum
dominating set of G×H and so γ(G×H) = α(G)n(H).

Lemma 9. Let G and H be connected graphs of order at least 3. If G ×H is well-
dominated, then γ(G × H) = γ(G)n(H) = γ(H)n(G). Furthermore, γ(G) = α(G)
and γ(H) = α(H).

Proof. Let D be a minimum dominating set of G. It is easy to see that D × V (H)
dominates G×H. We get

γ(G)n(H) = |D × V (H)| ≥ γ(G×H) = α(G)n(H) ≥ γ(G)n(H) ,

and we have equality throughout. Therefore, γ(G × H) = γ(G)n(H), and γ(G) =
α(G). By reversing the roles of G and H we also have γ(G × H) = γ(H)n(G) and
γ(H) = α(H).

As we have observed several times, D×V (H) dominates the direct product G×H
if D dominates G. The next lemma shows that if both factors have order at least 3,
then the set D × V (H) is not a minimal dominating set unless D is independent in
G.

Lemma 10. Let G and H be connected graphs of order at least 3, and let D be a
minimal dominating set of G. The set D × V (H) is a minimal dominating set of
G×H if and only if D is independent in G.

Proof. If D is an independent dominating set of G, then D × V (H) is a maximal
independent set, and hence a minimal dominating set, of G × H. For the converse,
suppose that a is a vertex that is not isolated in the subgraph ofG induced byD. Let x
be a vertex inH that is not a support vertex. We will show that pn[(a, x), D×V (H)] =
∅. First, since N(a) ∩D 6= ∅, we see that (a, x) has a neighbor in D × V (H), which
implies that (a, x) 6∈ pn[(a, x), D×V (H)]. Next, let (u, y) ∈ N((a, x))− (D×V (H)).
Since x is not a support vertex of H, we see that there exists a path, say x, y, z,
in H. However, this means that (a, z) is adjacent to (u, y), and hence (u, y) 6∈
pn[(a, x), D × V (H)]. It follows that pn[(a, x), D × V (H)] = ∅, which implies that
D × V (H) is not a minimal dominating set.

As a result of Lemma 10 we can now state a very restrictive condition that must
be satisfied by both factors of a well-dominated direct product if both have order at
least 3.

Corollary 11. Let G and H be connected graphs of order at least 3. If G × H is
well-dominated, then all minimum dominating sets of G and all minimum dominating
sets of H are independent.

7



Proof. Suppose G and H are connected of order at least 3 such that G ×H is well-
dominated. By Lemma 9, we have γ(G × H) = γ(G)n(H) = γ(H)n(G). Let D
be any minimum dominating set of G. Since D × V (H) dominates G × H and
γ(G×H) = |D×V (H)|, it follows from Lemma 10 that D is independent. Similarly,
every minimum dominating set of H is independent.

Using these results we now proceed to the proof of Theorem 2.

It was verified in [1] that G×H is well-dominated if G×H = K3 ×K3, G×H =
K2 × C4, or G × H = K2 × (F � K1) for a connected graph F . For the converse
we assume that G×H is well-dominated. Suppose for the sake of contradiction that
G×H 6= K3 ×K3, G×H 6= K2 × C4, and G×H 6= K2 × (F �K1) for a connected
graph F . By Theorem 1, it follows that both G and H possess an isolatable vertex,
and hence n(G) ≥ 3 and n(H) ≥ 3. Let M be an independent set in G such that
G − N [M ] = {x}. Since G is connected, there exists a vertex x′ ∈ N(M) that is
adjacent to x. By Lemma 9 and the inequality chain (1), γ(G) = i(G) = α(G). Since
M ∪ {x} is an independent dominating set of G, it follows that γ(G) = |M | + 1.
However, M ∪ {x′} dominates G and is therefore a minimum dominating set of G
that is not independent, which is a contradiction by Corollary 11.

In the first paper on well-dominated graphs, Finbow et al. proved the following
characterization of the class of well-dominated bipartite graphs.

Theorem 12. [3, Theorem 3] Let G be a connected, bipartite graph. Then G is
well-dominated if and only if G = C4 or G is the corona of a bipartite graph.

Let F be a connected graph. It is straightforward to verify that (F �K1)×K2 =
(F × K2) � K1. Thus the well-dominated graphs of the form K2 × (F � K1) are a
subclass of the easily recognizable well-dominated, bipartite coronas of Theorem 12.

5 Well-dominated Cartesian products

In this section we prove the following characterization of well-dominated Cartesian
products in which at least one of the factors is a complete graph. In particular, we
prove our main theorem in this study.

Theorem 3 Let m be a positive integer with m ≥ 2 and let H be a nontrivial,
connected graph. The Cartesian product Km 2H is well-dominated if and only if
either m 6= 3 and H = Km or m = 3 and H ∈ {K3, P3}.

We begin by deriving some preliminary results that will prove to be useful in its
proof. After that we prove Proposition 21, which is a special case of Theorem 3 that
assumes n(H) ≤ m.
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As mentioned in the introduction, the first step in this process was obtained by
Anderson, Kuenzel and Rall [1].

Theorem 13. [1, Theorem 1] Let G and H be connected graphs. If G2H is well-
dominated, then G or H is well-dominated.

If a graph G admits a dominating set that is open irredundant, then the following
result provides a method for constructing a minimal dominating set in any Cartesian
product that has G as one of its factors.

Lemma 14. If D is an open irredundant dominating set of a graph G, then D×V (H)
is an open irredundant, minimal dominating set of G2H, for any graph H.

Proof. If (x, y) ∈ V (G2H)− (D× V (H)), then there exists a vertex x′ ∈ N(x) ∩D
sinceD is a dominating set ofG. This implies that (x, y) is adjacent to (x′, y), and thus
D×V (H) is a dominating set ofG2H. To see thatD×V (H) is a minimal dominating
set, let (d, h) be an arbitrary vertex in D × V (H). Since D is an open irredundant
set of G, there exists a vertex d′ in epn[d,D]. By definition, d′ ∈ N(d)−D, and d′ is
not adjacent to any vertex of D−{d}. Consequently, (d′, h) ∈ epn[(d, h), D×V (H)].
Therefore, D× V (H) is an open irredundant, minimal dominating set of G2H.

Bollobás and Cockayne proved that every graph with minimum degree at least 1
has an open irredundant, minimum dominating set D.

Proposition 15. [2, Proposition 6] If a graph G has no isolated vertices, then G has
a minimum dominating set that is open irredundant.

By using Proposition 15, we now establish a relationship that must hold between
two graphs if their Cartesian product is well-dominated.

Proposition 16. Let G and H be nontrivial connected graphs. If G2H is well-
dominated, then γ(G2H) = γ(G) · n(H) = γ(H) · n(G).

Proof. Let D1 be a minimum dominating set of G that is open irredundant and let
D2 be a minimum dominating set of H that is open irredundant. These minimum
dominating sets of G and H exist by Proposition 15. By Lemma 14, it follows that
both of D1 × V (H) and V (G) × D2 are minimal dominating sets of G2H. Since
G2H is well-dominated, it follows that γ(G2H) = |D1 × V (H)| = |V (G) × D2|,
and therefore

γ(G2H) = γ(G) · n(H) = γ(H) · n(G) .

If D is a minimal dominating set of a graph G, then, in general, some vertices of
D will have external private neighbors with respect to D and some vertices will not.
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The following notation will be useful in what follows. If D is any dominating set of
G, we define c(D) as follows:

c(D) = {x ∈ D : pn[x,D] = {x}} .

That is, a vertex x in D belongs to c(D) if and only if x is isolated in the subgraph
induced by D, and N(x)−D ⊆ N(D−{x}). In particular, c(D) is a (possibly empty)
independent set of G. Note also that if c(D) 6= ∅, then |D| ≥ 2 since we are assuming
that G is of order at least 2.

Lemma 17. Let S be a minimal dominating set of a graph H. If D is a minimal
dominating set of a graph G such that c(D) 6= ∅, then ({u}×S)∪((D − {u})× V (H))
is a dominating set of G2H for every u ∈ c(D). If, in addition, c(D) = {u}, then
({u} × S) ∪ ((D − {u})× V (H)) is a minimal dominating set of G2H.

Proof. Let u ∈ c(D). For simplification, let A = ({u} × S) ∪ ((D − {u})× V (H)).
Suppose (x, y) ∈ V (G2H) − A. If x 6∈ D, then there exists d ∈ D − {u} such that
dx ∈ E(G). This follows since D dominates G and x /∈ pn[u,D] = {u}. Hence, (x, y)
has a neighbor in (D − {u}) × V (H). On the other hand, if x ∈ D, then x = u
and y /∈ S. Since S dominates H, it follows that (x, y) has a neighbor in {u} × S.
Therefore, A is a dominating set of G2H.

Now, suppose that c(D) = {u}. To show that A is a minimal dominating set let
(a, b) ∈ A. If a 6= u, then a has an external private neighbor, say a′, with respect
to D, and (a′, b) is a private neighbor of (a, b) with respect to A. On the other
hand, suppose a = u. This implies that b ∈ S. Since S is a minimal dominating set
of H, there exists b′ ∈ pn[b, S]. It now follows that (u, b′) is a private neighbor of
(u, b) with respect to A since u is an isolated vertex in G[D]. We have shown that
pn[(a, b), A] 6= ∅, and it follows that A is a minimal dominating set of G2H.

If G is any finite graph, then for large enough m, namely for m > ∆(G), the
Cartesian product G2Km is well-covered. (See page 1262 of [8].) This is not true in
the well-dominated class as we now prove.

Proposition 18. If G is a nontrivial connected graph and has a minimum dominating
set D such that c(D) 6= ∅, then G2H is not well-dominated for every nontrivial
connected graph H.

Proof. Let G be a nontrivial, connected graph and suppose that D is a minimum
dominating set of G with a vertex u ∈ c(D). Let H be a nontrivial connected
graph and suppose that S is any minimum dominating set of H. By Lemma 17,
({u} × S) ∪ ((D − {u})× V (H)) is a dominating set of G2H. While ({u} × S) ∪
((D − {u})× V (H)) may not be a minimal dominating set, it contains one. Since

|({u} × S) ∪ ((D − {u})× V (H)) | = γ(H) + (γ(G)− 1) · n(H)

= γ(G) · n(H) + (γ(H)− n(H)) < γ(G) · n(H),
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we conclude by Proposition 16 that G2H is not well-dominated.

The following corollary of Proposition 18 further limits which graphs can be a factor
of a well-dominated Cartesian product.

Corollary 19. If G is a nontrivial connected graph that is well-dominated and has
an isolatable vertex, then G2H is not well-dominated for any nontrivial connected
graph H.

Proof. Suppose G is a nontrivial connected, well-dominated graph and suppose x is
an isolatable vertex of G. Let H be any connected graph of order at least 2. Since
G is well-dominated, we have γ(G) = i(G) = α(G) = Γ(G). Let I be an independent
set in G such that G−N [I] = {x}. The set J = I∪{x} is an independent dominating
set, and is therefore also a minimum dominating set of G. Since G−N [I] = {x}, we
see that x ∈ c(J). It follows by Proposition 18 that G2H is not well-dominated.

The following result follows immediately from Corollary 19.

Corollary 20. If G is a connected, well-dominated graph of order at least 3 and
G2H is well-dominated for some nontrivial connected graph H, then δ(G) ≥ 2.

Proceeding with the proof of Theorem 3 we first deal with the case where the order
of the complete factor in the Cartesian product is at least as large as the order of the
other factor.

Proposition 21. Let m be a positive integer such that m ≥ 2 and let H be a non-
trivial connected graph such that n(H) ≤ m. The Cartesian product Km 2H is
well-dominated if and only if one of the following holds.

1. m = 2 and H = K2.

2. m = 3 and H ∈ {K3, P3}.

3. m ≥ 4 and H = Km.

Proof. If n(H) < m, then Km 2H is not well-dominated follows immediately from
Proposition 16. Hence, we now assume that H has order m. It is straightforward
to show that the result is correct for m = 2 or m = 3. Now, let m ≥ 4. It is
easy to show that Km 2Km is well-dominated. For the converse, suppose that H
is a connected graph of order m such that Km 2H is well-dominated but such that
H 6= Km. Throughout the proof we let {h1, h2, . . . , hm} denote the vertex set of H.

By Proposition 16, we infer that γ(H) = 1. Without loss of generality we assume
that {h1} dominates H. Let A be a maximum independent set of H. Since H is
not a complete graph, |A| ≥ 2 and A does not contain h1. If |A| = m − 1, then
H = K1,m−1. In this case let S = ([m− 1]× {hm}) ∪ ({m} × {h2, . . . , hm−1}). Note
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that |S| = 2m − 3 > m. We claim that S is a minimal dominating set of Km 2H.
It is clear that S dominates Km 2H. Furthermore, pn[(i, hm), S] = {(i, h1)} for
i ∈ [m − 1], and (m,hj) ∈ pn[(m,hj), S] for 2 ≤ j ≤ m − 1. This proves that S is a
minimal dominating set of Km 2H, which is a contradiction. Thus, we may assume
that |A| < m− 1, and we may also assume that A = V (H)−{h1, . . . , hk} for some k
such that 2 ≤ k ≤ m− 2. Let R = ([m− 1]× {h1}) ∪ ({m} × A). It is easy to show
that R dominates Km 2H. For i ∈ [m − 1], we see that (i, h2) ∈ pn[(i, h1), R], and
(m, a) ∈ pn[(m, a), R], for a ∈ A. This implies that R is a minimal dominating set.
However, |R| = m − 1 + |A| ≥ m − 1 + 2 > m, which is a contradiction and implies
that Km 2H is not well-dominated.

Therefore, if m ≥ 4 and H is a connected graph of order m, then Km 2H is
well-dominated if and only if H = Km.

In the remainder of the proof of Theorem 3 we consider Km 2H where n(H) > m.
The proofs for m = 2 and m = 3 are straightforward, while the proof of the more
general case for m ≥ 4 occupies the rest of this section.

Proposition 22. If H is a connected graph of order at least 3, then K22H is not
well-dominated.

Proof. Suppose there exists a connected graph H of order at least 3, such that K22H
is well-dominated. By Proposition 16, we have γ(K22H) = γ(K2)n(H) = n(H).
Since H has order at least 3 and is connected, there exists a vertex h ∈ V (H) such that
deg(h) ≥ 2. Now, if S is the set defined by S = ([2]×{h})∪ ({1}× (V (H)−NH [h]))
we arrive at a contradiction since S dominates K22H and |S| ≤ n(H)− 1.

We have a similar result for Cartesian products with K3.

Proposition 23. If H is a connected graph of order at least 4, then K32H is not
well-dominated.

Proof. Suppose there exists a connected graph H of order more than 3, such that
K32H is well-dominated. By Proposition 16, we have γ(K32H) = Γ(K32H) =
n(H). Suppose first that ∆(H) ≥ 3; let h be a vertex of H such that deg(h) = r ≥ 3.
This implies that S = ([3] × {h}) ∪ ({1} × (V (H) − NH [h])) dominates K32H.
This is a contradiction since |S| = 3 + (n(H) − (r + 1)) < n(H). Consequently,
∆(H) = 2, and thus H is either a cycle or a path of order at least 4. It is easy to
verify that γ(K32P4) = 4 < 6 = Γ(K32P4) and γ(K32C4) = 3 < 6 = Γ(K32C4).
Thus, we may assume that H contains a path of order 5, say h1h2h3h4h5. Let A =
({2, 3} × {h3}) ∪ ({1} × (V (H) − {h2, h3, h4})). This set A dominates K32H and
yet |A| = n(H)− 1. This final contradiction establishes the proposition.

Proposition 24. Let m be a positive integer such that m ≥ 4. If H is a connected
graph of order more than m, then Km 2H is not well-dominated.
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Proof. We proceed by induction on m. For the base case we suppose for the sake of
contradiction that there exists a connected graph H of order more than 4 such that
K42H is well-dominated. Let k = γ(H). By Proposition 16, γ(K42H) = n(H) =
4k, and hence every minimal dominating set of the well-dominated graph K42H has
cardinality 4k. Let D = {h1, . . . , hk} be a minimum dominating set of H. Suppose
first that H has a vertex x of degree at least 4. If A = V (H) − N [x], then the set
S defined by S = ([4] × {x}) ∪ ({1} × A) is a dominating set of K42H. However,
|S| = 4 + |A| = 4 + (n(H) − |N [x]|) < 4k, which is a contradiction. Therefore,
∆(H) ≤ 3. Since V (H) = ∪ki=1N [hi] and n(H) = 4k, it follows that deg(hi) = 3,
for every i ∈ [k], and we see that NH [h1], . . . , NH [hk] is a partition of V (H). Let
M = {4} ×D. The set M is independent in the well-dominated graph K42H since
NH [h1], . . . , NH [hk] is a partition of V (H). By Observation 5, it follows that the graph
G defined by G = K42H −N [M ] is well-dominated. Note that G = K32F , where
F is the subgraph of H induced by V (H)−D. This implies that each component of
G is well-dominated. Using Proposition 23 we infer that each component of F has
order at most 3. Furthermore, ∆(F ) ≤ 2 since ∆(H) = 3.

Note that K32K2 is not well-dominated, which then implies that each component
of F has order 1 or 3. At least one of the components of F has order 3, for otherwise H
is not connected. For each i ∈ [k], let Xi = N(hi) = {xi1, xi2, xi3}. Each component of
F that has order 3 intersects either one, two or three of the sets X1, . . . , Xk. Suppose
first that there exists i ∈ [k], say i = 1, such that 〈Xi〉 is a component of F . This
implies that the subgraph of H induced by X1∪{h1} is a component of H of order 4,
which contradicts the assumption that H is connected and has order at least 5. We
thus assume that each component of F that has order 3 has a nonempty intersection
with either two or three of the sets X1, . . . , Xk. Any such component is clearly either
a path of order 3 or a complete graph of order 3.

Suppose there exists 1 ≤ i < j ≤ k such that 〈Xi∪Xj〉 contains a P3 or K3 involving
at least one vertex from each of Xi and Xj. Without loss of generality we assume that
i = 1 and j = 2 and that x13 has degree at least 2 in 〈X1 ∪X2〉. We assume without
loss of generality that x13x21 ∈ E(H). If x13 is adjacent to another vertex in X2, say
x13x22 ∈ E(H), then let B = ({1} × {h1, x11, x12, x23}) ∪ {(2, x21), (3, x21), (4, x22)}.
On the other hand, if x13 is adjacent to another vertex in X1, say x13x12 ∈ E(H),
then let B = ({1}×{h1, x11, x22})∪{(2, x12), (2, x23), (3, x21), (4, x21)}. In both cases
we see that B ∪ ([4] × {h3, . . . , hk}) dominates K42H and has cardinality 4k − 1,
which is a contradiction.

Hence, every component of F that has order 3 contains one vertex from three dis-
tinct members of the partition X1, . . . , Xk of V (F ). We assume without loss of gener-
ality that x11, x21, x31 is a path in F . Let B = ({1}× {h1, h2, x12, x13, x22, x23, x32})∪
{(2, x11), (2, x33), (3, x31), (4, x31)}. It now follows thatB∪([4]×{h4, . . . , hk}) is a dom-
inating set of K42H and has cardinality 4k− 1, which is a contradiction. Therefore,
if H is a connected graph of order more than 4, then K42H is not well-dominated.
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Now let m ≥ 5. Our inductive hypothesis is that if G is any connected graph of
order at least m, then Km−12G is not well-dominated. Again, for the sake of arriving
at a contradiction, suppose there exists a connected graph H of order more than m
such that Km 2H is well-dominated. For consistency and ease of understanding we
use the same notation as in the case m = 4. Let k = γ(H) and let D = {h1, . . . , hk}
be a minimum dominating set of H. By Proposition 16, γ(Km 2H) = n(H) = mk,
and hence every minimal dominating set of the well-dominated graph Km 2H has
cardinality mk. Suppose first that H has a vertex x of degree at least m. If A =
V (H)−N [x], then the set S defined by S = ([m]×{x})∪ ({1}×A) is a dominating
set of Km 2H. However, |S| = m + |A| = m + (n(H) − |N [x]|) < mk, which is a
contradiction. Therefore, ∆(H) ≤ m− 1.

Since V (H) = ∪ki=1N [hi], it follows that deg(hi) = m − 1, for every i ∈ [k] and
NH [h1], . . . , NH [hk] is a partition of V (H). Similar to the case above (form = 4) we let
M be the independent set defined by M = {m} ×D, and we note by Observation 5
that G = Km 2H − N [M ] is well-dominated, and hence every component of G is
well-dominated. Since G is isomorphic to Km−12F , where F is the subgraph of H
induced by V (H) − D, it follows from the inductive hypothesis and Proposition 21
that every nontrivial component of F is isomorphic to Km−1. Also, since Km−12F
is well-dominated, it follows by Proposition 16 that γ(Km−12F ) = (m − 1)γ(F ) =
n(F ) = k(m− 1). Thus, γ(F ) = k, which implies that F has no components of order
1. That is, F is the disjoint union of k complete graphs of order m − 1. Suppose
that for some i ∈ [k] there exists a vertex x ∈ NH(hi) such that NF (x) ⊆ NH(hi).
Since the component, say Cx, of F that contains x is a complete graph of order
m − 1, we infer that Cx = NH(hi), which implies that H is not connected. This
contradiction means there is no such i ∈ [k]. In particular, for each u ∈ NH(h1) we
have N(u) ∩ (NH(h2) ∪ · · · ∪NH(hk)) 6= ∅. Let

S =
(
{1} × ∪k

i=2NH [hi]
)
∪ ({2, . . . ,m} × {h1}) .

This set S dominates Km 2H and |S| = m(k − 1) + (m − 1) = mk − 1, which is a
contradiction. This establishes the proposition.

By combining the results of Propositions 21, 22, 23, and 24, the proof of Theorem 3
is complete.

We close this section on well-dominated Cartesian products with the following
conjecture.

Conjecture 1. Let G and H be nontrivial connected graphs. If G2H is well-
dominated, then at least one of G or H is a complete graph.

If Conjecture 1 is true, then we would have a complete characterization of the well-
dominated Cartesian products. That is, if Conjecture 1 is true, then by Theorem 3
it follows that the Cartesian product G2H of two nontrivial, connected graphs is
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well-dominated if and only if G2H = Km 2Km for some positive integer m ≥ 2 or
G2H = K32P3.
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