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Abstract

A graph G is well-covered if all maximal independent sets of G have the
same cardinality. In 1992 Topp and Volkmann investigated the structure of
well-covered graphs that have nontrivial factorizations with respect to some of
the standard graph products. In particular, they showed that both factors of
a well-covered direct product are also well-covered and proved that the direct
product of two complete graphs (respectively, two cycles) is well-covered pre-
cisely when they have the same order (respectively, both have order 3 or 4).
Furthermore, they proved that the direct product of two well-covered graphs
with independence number one-half their order is well-covered. We initiate a
characterization of nontrivial, connected well-covered graphs G and H, whose
independence numbers are strictly less than one-half their orders, such that
their direct product G x H is well-covered. In particular, we show that in
this case both G and H have girth 3 and we present several infinite families of
such well-covered direct products. Moreover, we show that if G is a factor of
any well-covered direct product, then G is a complete graph unless it is possi-
ble to create an isolated vertex by removing the closed neighborhood of some
independent set of vertices in G.

1 Introduction

Plummer [15] defined a graph to be well-covered if every maximal independent set
is actually a maximum independent set. The attempts to better understand the
class of well-covered graphs have, for the most part, proceeded as follows. Find a
nice characterization of those well-covered graphs that, in addition, belong to some
natural subclass of graphs. For instance, Campbell, Ellingham and Royle [2] charac-
terized the class of cubic well-covered graphs. Finbow, Hartnell and Nowakowski [4]
characterized well-covered graphs that have no cycles of order less than 5; the same
group of authors [5] dealt with well-covered graphs with no cycles of length 4 or 5.



In a series of papers [6, 7, 8, 9] Finbow, Hartnell, Nowakowski and Plummer gave a
complete characterization of the class of maximal planar, well-covered graphs.

Topp and Volkmann [16] first studied well-covered graphs in the context of graph
products, including the Cartesian, conjunction (now commonly known as direct),
and lexicographic products. From their study open questions remained for Carte-
sian and direct products. Several authors contributed to the current understanding
of well-covered Cartesian products. See [10, 11, 12]. As far as well-covered direct
products are concerned, Topp and Volkmann focused mainly on graphs whose inde-
pendence number is one-half the order. These graphs are called very well-covered.
However, much remains unknown about direct products that are well-covered but
not very well-covered. In this paper we initiate the characterization of this class of
graphs.

The remainder of the paper is structured as follows. In the next section we
provide the important definitions and recall preliminary results that will be used in
the remainder of the paper. Section 3 is devoted to direct products in which one of
the factors is a complete graph. In Section 4 we focus on direct products in which
one of the factors has no isolatable vertices. In the main result of this section we
prove that if G x H is well-covered and G has no isolatable vertices, then G is a
complete graph. In addition, for each positive integer n > 3 we provide two infinite
families of graphs such that the direct product of K, and any graph from these
families is well-covered. In Section 5 we prove that if G x H is well-covered but not
very well-covered, then every edge of G (and of H) is incident with a triangle. In
particular, in this case both factors have girth 3.

2 Definitions and preliminary results

In general we follow the notation of [17]. In particular, we denote the order of a
finite graph G by n(G) and for a positive integer k the set of positive integers no
larger than k& will be denoted by [k]. If A C V(G), then G[A4] is the subgraph
of G induced by A. The set of isolated vertices of G will be denoted Gy and G
will represent the induced subgraph G — Gy. A subset D C V(G) dominates a
subset S C V(G) if S C N[D]. If D dominates V(G), then we will also say that
D dominates the graph G and that D is a dominating set of G. A set I C V(G) is
an independent dominating set if I is simultaneously independent and dominating.
This is equivalent to I being a maximal independent set with respect to set inclusion.
The independence number of G is the cardinality, a(G), of a largest independent set
in G; we denote the smallest cardinality of a maximal independent set in G by i(G).
The graph G is well-covered if all maximal independent sets of G have the same
cardinality. Equivalently, G is well-covered if i(G) = a(G). The independence ratio
of a graph G is defined by %

In a well-covered graph G every vertex can (in a greedy fashion) be enlarged to



a maximal independent set, which then has order a(G). Note that a graph is well-
covered if and only if each of its components is well-covered. A vertex of degree 1 is
called a leaf and its only neighbor is called a support vertex. If G is a well-covered
graph with a support vertex z and M is any maximal independent set in G that
contains z, then replacing x in M by its set L of adjacent leaves is also independent.
It follows that |L| = 1. A vertex x of G is isolatable if there exists an independent
set I in G such that = has degree 0 (that is, x is isolated) in G — N[I]. Note that a
leaf in a component of order at least 3 is isolatable.
The direct product, G x H, of graphs G and H is defined as follows:

o V(Gx H)=V(G) x V(H);
o E(G x H) ={(g1,h)(g2.h2) | g192 € E(G) and h1hy € E(H)}

The direct product is both commutative, associative and distributes over disjoint
unions of graphs. For a vertex g of G, the H-layer over g of G x H is the set
{(g9,h) | h € V(H)}, and it is denoted by 9H. Similarly, for h € V(H), the G-
layer over h, G", is the set {(g,h) | g € V(G)}. Note that each G-layer and
each H-layer is an independent set in G x H. The projection to G is the map
pa : V(G x H) — V(G) defined by pg(g,h) = g. Similarly, the projection to H is
the map py : V(G x H) — V(H) defined by pg(g,h) = h.

In the remainder of this section we present some results that will prove useful in
establishing our main results. The first lemma is due to Topp and Volkmann [16].
We provide a short proof since the ideas therein are so common when studying
well-covered direct products.

Lemma 1 ([16]). Let H be a graph with no isolated vertices. If I is a mazimal
independent set of any graph G, then I x V(H) is a mazimal independent set of
G x H.

Proof. For any g € I, the H-layer over g is independent. Since [ is independent in
G, it follows that for distinct vertices @ and b in I no vertex of ®H is adjacent to any
vertex of *H, and thus I x V (H) is independent. Let (u,v) € V(G x H)— (I xV(H)).
Since I is a maximal independent set of G and u ¢ I, we infer there exists x € I such
that « and u are adjacent. For any neighbor y of v (such a vertex y exists since H
has no isolated vertices), it follows that (z,y) belongs to I x V(H) and is adjacent
to (u,v). We conclude that I x V(H) is a maximal independent set in G x H. [

As an immediate consequence of Lemma 1 we get a lower bound for a(G x H),
which is well-known (see [13, 14]), and an upper bound for i(G x H).

Corollary 2. If both G and H have no isolated vertices, then

e oG x H) > max{a(G)n(H),a(H)n(G)};



e i(G x H) <min{i(G)n(H),i(H)n(G)}.

The following lemma follows directly from the definition of well-covered. It
has been very useful (especially as a necessary condition to show that a graph is
not well-covered) in several of the papers characterizing well-covered graphs having
some additional property (for example, a girth restriction).

Lemma 3 ([4]). If G is a well-covered graph and I is an independent set of G, then
G — N[I] is well-covered.

The following lemma holds for any graph.

Lemma 4. If G is any graph and J is an independent set of vertices in G such
that |J| = a(G) — 1, then either J is a mazimal independent set or G — N[J] is a
complete graph.

Proof. Suppose that J is not a maximal independent set in . This implies that
G — N[J] is nonempty. If G — N[J] contains two nonadjacent vertices u and v, then
JU{u,v} is independent and has cardinality a(G) + 1, which is a contradiction. [J

Our results will always involve graphs with no isolated vertices. However, there
are a number of situations in which isolated vertices arise when the closed neighbor-
hood of an independent set is removed from a graph. Thus we have the following
generalization of a theorem first proved by Topp and Volkmann [16].

Theorem 5. If G and H are graphs and G x H is well-covered, then

(a) G and H are well-covered, and
(b) a(GF)n(H") = a(H)n(G™).

Proof. Assume that G x H is well covered. Since the direct product distributes over
disjoint unions, G x H is the disjoint union of GT x H' and a graph K, which is a
set of n(G) - |Ho| + |Go| - n(H™) isolated vertices. The subgraph G+ x Ht of G x H
is well-covered since it is the disjoint union of some components (possibly just 1)
of the well-covered graph G x H. Let Iy and I» be maximal independent sets in
G*. By Lemma 1, I} x V(H™") and Iy x V(H™) are maximal independent sets in
GT x HT. Since G x HT is well-covered, these two sets have the same cardinality,
and therefore |I1| = |I2|. This implies that G* is well-covered. It follows that every
maximal independent set of G has cardinality a(GT)+|Gp|. Therefore, G is also well-
covered. Similarly, H™ and H are well-covered. Moreover, both G and H™ have
no isolated vertices. We infer by Corollary 2 that a(GT)n(H") = a(HT)n(GT). O

When G x H is well-covered and neither G nor H has isolated vertices, Theorem 5
implies that G and H have the same independence ratio. That is, Z(—g; = 3(53 On
the other hand, if G or H has isolated vertices and G x H is well-covered, then these
ratios may not be equal. For a small example let G = Ko U K1 and H = K».

The following result was proved by Berge [1].




Theorem 6 ([1]). If G is a well-covered graph with no isolated vertices, then |S| <
|IN(S)| for any independent set S of G.

This result immediately implies that a(G) < in(G), for any well-covered G with

no isolated vertices. A well-covered graph with no isolated vertices that achieves
this upper bound is called very well-covered. Since both partite sets of a bipartite
graph are maximal independent sets, it is clear that a well-covered bipartite graph
with no isolated vertices is very well-covered. Favaron [3] characterized the very
well-covered graphs in terms of the existence of a perfect matching that possesses a
special property. Let G be a graph with a perfect matching M. For each vertex u
of G, we let M(u) denote the vertex adjacent to w in M. Favaron [3] said M has
Property (P) if for every vertex x of G the following holds.

o If y € Ng(z) and y # M(x), then y ¢ Ng(M(x)) and y € Ng(z), for every
z € Ng(M(z)).

The following theorem of Favaron gives the aforementioned characterization.
Theorem 7 ([3]). The following are equivalent for any simple graph G.

(i) The graph G is very well-covered.

(i) There is a perfect matching in G that satisfies Property (P).

(iii) There exists at least one perfect matching in G, and every perfect matching in
G satisfies Property (P).

We will need the following theorem of Topp and Volkmann concerning very well-
covered graphs.

Theorem 8 ([16]). Let G and H be graphs without isolated vertices. If at least one
of G and H is very well-covered, then the following statements are equivalent:

(a) G x H is well-covered,
(b) G x H is very well-covered,
(c) both G and H are very well-covered.

Because of Theorem 8 the general problem of characterizing well-covered direct
products that are not very well-covered is reduced to characterizing those pairs of
well-covered graphs G and H, neither of which is very well-covered, but whose direct
product G x H is well-covered.



3 Products of the form G x K,

Suppose that [ is a maximal independent set in G x H and that g is a vertex of G

such that TN9H # () but that INYH # 9H. Let (g,h) € 9H — (INYH). Since

I is a dominating set of G x H and 9H is independent, it follows that there exists

g € Ng(g) and h' € Ny(h) such that (¢',h') € I. Furthermore, such a vertex h’

does not belong to Ny (pa(I N9H)). However, it is possible that b’ € py(I N9H).
Consider now the special case G x K,, for n > 2. Let V(K,,) = [n].

Lemma 9. Let n > 2 and let G be any graph. If I is any maximal independent set
of G x Ky, then |[I NIK,| € {0,1,n}, for any g € V(G).

Proof. If n = 2, then the conclusion is obvious. Assume n > 3 and suppose for the
sake of contradiction that [I NYK,| = m for some 2 < m < n. Assume without loss
of generality that {(g,1),(g,2)} C I. Let i € [n] such that (g,i) ¢ I. As above,
there exists ¢’ € Ng(g) and j # i such that (¢/,7) € I. Since j # 1 or j # 2, this
implies that (¢',7) € N({(g,1),(g,2)}), which contradicts the independence of I.
Therefore, [I NYK,| € {0,1,n}. O

For an arbitrary positive integer n > 2 and a maximal independent set I of
G x K, we can use Lemma 9 to define a weak partition of V(G). In particular,
Vo, Vi,..., Va, V] defined by

(a) Vo={g € V(G)[INIK, =0};
(b) Vi = {g € V(G) | TN 9K, = {(g K)}} for & € [n;
() Vi =1{g€eV(G)|INIK, =9K,}.
is a weak partition. Furthermore, the following four conditions hold.
1. For k € [n], if u € Vi and v € V(G) — (Vo U V}), then uv € E(G).
2. For k € [n], if Vj is not empty, then no vertex of Vj is isolated in G[V].
3. The set V},,] is independent in G.

4. For each g € Vp, either Ng(g) NV, # 0 or g has a neighbor in at least two of
the sets Vi,...,V,.

If we have a weak partition of V(G) that satisfies these four conditions, then it
is clear how to construct a maximal independent set of G x K,. Thus we have a
way to define i(G x K,,) and a(G x K,,) in terms of such partitions.

i(G x Ky) = min{n - [Viy| + > [Vil} a(G x Ky) = max{n - [Viy| + > [Vil},
k=1 k=1



where the minimum and maximum values are computed over all weak partitions
Vo, Vi, ..., Vi, V}yy) that satisfy conditions 1—4 above.

The next lemma gives a necessary condition on a graph G for the direct product
of G and a complete graph to be well-covered.

Lemma 10. Let n be a positive integer, n > 2. If G x K, is well-covered, then for
every x € V(G) such that deg(z) > n the graph G — N|x] has at least one isolated
verter.

Proof. We prove the contrapositive. Suppose x is a vertex in GG of degree at least
n such that G — N|[x] has minimum degree at least 1. We define a weak partition
Vo, Vi, ..., Vi, Vi as follows. Let Vp = N(x), let Vi = V(G) — Nlz], let V; =  for
2 <i <n,and let V},,) = {r}. Since G — N[z] has minimum degree at least 1, it is
easy to check that this weak partition satisfies conditions 1—4 above. Furthermore,
deg(x) > n, and hence,

i(Gx Kp,)<n+|V(G) = N[z]| <n(G)—1<n(G) <a(G x K,).
This shows that G x K, is not well-covered. L]

Using Lemma 10 we now use the context of direct products to prove a general
result about bipartite well-covered graphs.

Corollary 11. If B is a bipartite, well-covered graph with minimum degree at least
2, then B has isolatable vertices. In fact, for any vertex x of B, the induced subgraph
B — Nx] has an isolated vertex.

Proof. Suppose B is bipartite, well-covered and §(B) > 2. The graph B is very
well-covered since it is bipartite and well-covered. By Theorem 8, B x Ky is very
well-covered. For any = € V(B), it follows from Lemma 10 that B — Nz| has at
least one isolated vertex. O

4 Factors with no isolatable vertices

As mentioned in [4], when classifying well-covered graphs one particularly useful
property of a graph is whether or not it contains isolatable vertices. We first consider
direct products where at least one of the factor graphs does not contain isolatable
vertices.

Lemma 12. Let H be a nontrivial, connected graph and let G be a graph with no
1solatable vertices such that G x H is well-covered. If A is any independent set of

G, then |N[A]| = |A|2G).



Proof. Assume G and H are as in the hypothesis of the theorem and let A be an
independent set of G. For |A| = a(G) the conclusion holds since any independent
set of G that has cardinality a(G) dominates G. If G is a clique, then |A| = 1 and
again the conclusion follows. Hence, we may assume that GG is not a complete graph.
Since both G and H have minimum degree at least 1, it follows from Theorem 5
that a(G)n(H) = a(H)n(G) and also that both G and H are well-covered. Since
S(H) > 1, Gx H—-N[AxV(H)] = G x H, where G' = G — N[A]. Since A is
independent, Lemma 3 implies that G’ is well-covered, and since G has no isolatable
vertex we infer that §(G’) > 1. Furthermore, A x V(H) is independent in G x H,
and thus by Lemma 3 we conclude that G’ x H is well-covered. Applying Theorem 5
again gives

a(G) _a(H) _ o(G)

n(G)  n(H) (G

Note that since G is well-covered, there exists a maximum independent set of G that
contains A and this implies that «(G’) = a(G) — |A|. Thus,

a(G) _a(@) _ a(G) - |4]
n(G)  n(G)  n(G)—|N[A]l
which implies | N[A]| = |A| 2. O

A special case of Lemma 12 is when |A| = 1, which yields the following corollary.

Corollary 13. Let G and H be nontrivial, connected graphs such that G has no

is(oé)atable vertex. If G x H is well-covered, then G is a reqular graph of degree
P — 1.
a(G)

Using Corollary 13 we can now easily establish the following result.

Corollary 14. Let G be a nontrivial, connected graph. If G x K3 is well-covered,
then G = K3 or G has at least one isolatable vertez.

Proof. Assume that G x K3 is well-covered and that G has no isolatable vertex.
Since G x K3 is well-covered, Theorem 5 implies GG is well-covered and that the in-
dependence ratio, %, is 1/3. By Corollary 13 we see that G is 2-regular. However,
the only connected 2-regular graphs that are well-covered are K3, Cy,C5 and C%7. Of

these, only K3 has independence ratio 1/3. ]

We now have the results necessary to give a partial characterization of well-
covered direct products in which at least one of the factors has no isolatable vertices.

Theorem 15. Let G and H be nontrivial, connected graphs such that the direct
product G x H is well-covered. If G has no isolatable vertices, then G is a complete
graph.



Proof. Let G and H be connected graphs with minimum degree at least 1 such that
G x H is well-covered and assume that G has no isolatable vertices. Suppose that
G is not a complete graph. That is, suppose that s = a(G) — 1 > 1. Let = be any
vertex of G. Since G is well-covered (by Theorem 5), we can find a maximal (in
fact a maximum) independent set of G that contains z. Let M be such a maximum

independent set. By Lemma 12, [N[M —{z}]| = 5% = SZ(-s-Gl)7 and by Corollary 13,

(@) _n(G) _ n(@)
s+1 s+1  «a(G)

V(G) = N[M — {z}]| =n(G) - = [N[z]].

In addition, by Lemma 4, G — N[M — {x}] is a clique, it contains z, and it has order
|N[z]|. By Corollary 13 G is regular, and this implies that N[z] is a component of G.
Since G is connected, we conclude that G is complete, which is a contradiction. [

Using Theorem 15 we can completely characterize direct products of connected
graphs in which neither factor has an isolatable vertex.

Corollary 16. Let G and H be nontrivial, connected graphs, neither of which has
an isolatable verter. If G X H is well-covered, then G = H = K, (q).

Proof. Since neither G nor H has an isolatable vertex, it follows from Theorem 15
that both G and H are complete graphs. By Theorem 5, the independence ratios of
G and H are equal. Consequently, G and H have the same order. O

Thus, classifying all well-covered direct products when exactly one of the factor
graphs does not contain isolatable vertices reduces to the study of well-covered direct
products of the form K, xG. Using Lemma 9 and the partition approach in Section 3,
it is easy to show that for any integer r > 2, the direct product K3 x K., , is well-
covered. (This generalizes to K, x K, ., being well-covered, where the second factor
is a complete n-partite graph.) To see that finding a characterization of those G
such that G x K, is well-covered is a nontrivial problem, consider the following
infinite class of graphs. Let k and n be positive integers. Form a graph H(k,n) of
order k(n + 1) by starting with the disjoint union of K}, and an independent set
{z1,...,2}. Partition the vertices of K}, into subsets A1, ..., A; each of cardinality
n. Finally, add edges to make the open neighborhood of z; in H(k,n) be A;, for
each i € [k].

The example in Figure 1 is H(4,2). For the special case when n = 1, the resulting
graphs H(k,1) are coronas. If k = 1, then H(1,n) = Kp4+1. All of these graphs
are split graphs, and because of their structure it is easy to show that H(k,n) is
well-covered with a(H (k,n)) = k.

Proposition 17. For each pair of positive integers n and k, the graph H(k,n) X
Kpy1 is well-covered.



Figure 1: The graph H(4,2).

Proof. For n =1 the graph H(k,n)x K, 1 is the direct product of K5 and the corona
of K. Both of these graphs are very well-covered, and thus H(k,n) x K, is well-
covered by Theorem 8. Now assume that n > 2 and for notational simplification let
G = H(k,n). Let B; = A; U {2} for each i € [k]. Note that B; and U*_, A, induce
complete subgraphs of G. Let I be any maximal independent set in G x K, 1 and
let Vo, Vi, ..., Vay1, Ving1) be the weak partition of V/(G) defined by (a), (b), and (c)
and satisfying conditions 1 — 4 following Lemma 9 in Section 3. We claim that for
every ¢ € [k] either

n+1
|Bi N Vjpgqyl = Land [B;N | J V| =0
j=1
or
B; C Vj for some j € [n+1].

We consider two cases.
If Bi N Vj,4q) # 0, then because G[B;] is a complete subgraph it follows that

|Bi N Vgl = 1 and [B; N U;Lill Vj| = 0. Otherwise, if B; N V},,;q) = 0, then by
condition 4 and the fact that B; induces a complete subgraph we have z; ¢ Vj.
Hence, there exists j € [n + 1] such that z; € V;. By condition 2 we infer that there
exists a vertex u in A; N V. Let w € A; — {u}. Since {z;,u} C Vj, it follows by
condition 1 that w € Vo U V;. We now infer that w € V; since UF_; A, induces a
complete subgraph of G. Therefore, B; C Vj;. It follows that the cardinality of I is

k(n + 1), completing the proof. O

Problem 1. Letn be a positive integer. Find a characterization of the class, C, of all
connected graphs G such that G has an isolatable vertex and G x K, is well-covered.

5 General direct products

In the previous section we characterized well-covered direct products of connected
graphs when neither factor has an isolatable vertex. Note that if connected graphs G
and H both have girth at least 4 and also have no isolatable vertices, then it follows
from Corollary 16 that G = H = Ks. In the main result of this section we make no

10



assumptions about the girth of the factors and no assumptions about whether the
factors have isolatable vertices. We show that if G and H are nontrivial connected
graphs whose direct product is well-covered but not very well-covered, then both G
and H have girth 3.

Lemma 18. Let G and H be nontrivial, connected graphs such that G x H is well-
covered but not very well-covered. If I is any independent set of G and B is any
bipartite component of G — N|[I], then B = K;.

Proof. Let G and H be nontrivial, connected graphs such that G x H is well-covered
but not very well-covered. By Theorems 5 and 8, G and H are well-covered but
neither G nor H is very well-covered. Suppose the lemma is not true. Let I be
independent in G and let B be a nontrivial bipartite component of G — N[I]. By
choosing a maximal independent set in each of the other components of G — N|[!]
besides B (if there are any), and adding them to I we get an independent set J such
that B = G — N[J]. Since H has no isolated vertices,

GxH-N[JxV(H)]=(G-N[J]))xH=BxH.

Using the fact that J x V' (H) is independent, it follows from Lemma 3 and Theorem 5
that B x H and B are well-covered. Since B is bipartite, we infer that B is very well-

covered. As a result, H is very well-covered by Theorem 8, which is a contradiction.
Therefore, B = Kj. O

Theorem 19. Let G and H be nontrivial, connected graphs such that G x H is
well-covered but not very well-covered. FEvery edge of G is incident with a triangle.

Proof. Let G and H be graphs satisfying the hypotheses of the theorem. Let xy be
an arbitrary edge of G. Note that G and H are both well-covered but neither is very
well-covered. If zy is in a triangle of GG, then there is nothing to prove. Suppose
then that N(z) N N(y) = 0. Let I be any maximal independent set of the graph
G — N[{z,y}] and let F = G — N[I]. Note that F is connected. By Lemmas 3
and 18, F' is well-covered and F' is not bipartite. Furthermore, if y is a leaf of F,
then {z} is a maximal independent set of F', but {y} is independent but not maximal
independent in F', which contradicts the fact that F' is well-covered. Thus, y (and
similarly «) is not a leaf in F'. Let F, = F' — Ny| and let F}, = F — N[z]. Since F'is
not bipartite, at least one of F, or F), contains an edge. Consequently, at least one
of z or y is in a triangle. O

The following corollary follows immediately from Theorem 19.

Corollary 20. Let G and H be nontrivial, connected graphs. If Gx H is well-covered
but not very well-covered, then both G and H have girth 3.

11



From the above result, classifying all well-covered direct products where both
factors contain isolatable vertices reduces to the study of well-covered direct products
where both factors have girth 3 and every edge of G (and of H) is incident with
a triangle. We now show the existence of graphs G and H each with girth 3 and
containing isolatable vertices neither of which are very well-covered such that G x H
is well-covered. The following lemma will be used in the subsequent result. Its proof
is immediate.

Lemma 21. Let I be a mazimal independent set in a graph G. If w and v are two
vertices with Ng(u) = Ng(v), then either I N Ng(u) # 0 or {u,v} C I.

As observed in [16], for n > 2 the graph K, x K, is well-covered. That is, the
“direct product square” of a nontrivial complete graph is well-covered. The following
proposition gives another infinite class of graphs whose direct product squares are
well-covered but not very well-covered. Of course, any such graph (other than a
complete graph) must have isolatable vertices by Theorem 15.

Proposition 22. Let r and m be positive integers and let G be the complete m-
partite graph K, .. The direct product G x G is well-covered.

Proof. We prove the statement of the proposition for m = 3 and any r. The proof
for an arbitrary m is similar. Let V(G) = {a1,...,as,}, with color classes X; =
{a1,...,ar}, Xo = {ap41,...,0a2,} and X3 = {agr41,...,as.}. Suppose that I is
any maximal independent set of G x G. We assume without loss of generality that
(a1,a1) € I. The open neighborhood of (a1, a;) is (X2 U X3) x (X2 U X3), and this
is the open neighborhood of every vertex in X; x X;. By Lemma 21 it follows that
X1 x X1 CI. Since [ is a maximal independent set, I has a nonempty intersection
with exactly one of X7 x X5 or Xs x X;. Again with no loss of generality we
may assume that I N (X7 x X3) # (. Using Lemma 21 again we can infer that
I = X3 x V(G). That is, |I| = 3r%, and thus G x G is well-covered. O
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