
On well-edge-dominated graphs

1Sarah E. Anderson, 2Kirsti Kuenzel and 3Douglas F. Rall

1Department of Mathematics
University of St. Thomas
St. Paul, Minnesota USA
Email: ande1298@stthomas.edu

2Department of Mathematics
Trinity College

Hartford, Connecticut USA
Email: kwashmath@gmail.com

3Department of Mathematics
Furman University

Greenville, SC, USA
Email: doug.rall@furman.edu

Abstract

A graph is said to be well-edge-dominated if all its minimal edge dominat-
ing sets are minimum. It is known that every well-edge-dominated graph
G is also equimatchable, meaning that every maximal matching in G is
maximum. In this paper, we show that if G is a connected, triangle-free,
nonbipartite, well-edge-dominated graph, then G is one of three graphs. We
also characterize the well-edge-dominated split graphs and Cartesian prod-
ucts. In particular, we show that a connected Cartesian product G�H is
well-edge-dominated, where G and H have order at least 2, if and only if
G�H = K2�K2.
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1 Introduction

A set F of edges in a graph G is an edge dominating set if every edge of G that
is not in F is adjacent to at least one edge in F . Mitchell and Hedetniemi [14]
initiated the study of edge domination by presenting a linear algorithm that finds
a smallest edge dominating set in a tree. Yannakakis and Gavril [18] showed that
it is NP hard to find an edge dominating set of minimum size even when restricted
to planar graphs or subcubic bipartite graphs. See [3, 8, 9] for additional results
on the complexity of finding a minimum edge dominating set. Frendrup, Hartnell
and Vestergaard [7] first initiated the study of well-edge-dominated graphs which
have the property that all of its minimal edge dominating sets have the same
cardinality, although this term was not used in the paper. In fact, the focus
of [7] was the study of equimatchable graphs which have the property that all
of its maximal matchings have the same cardinality. Frendrup et al. pointed
out that since a maximal matching is also a minimal edge dominating set, the
class of equimatchable graphs contains the subclass of well-edge-dominated graphs.
Furthermore, they state that every equimatchable graph of girth 5 or more is also
well-edge-dominated. However, the collection of well-edge-dominated graphs is a
proper subcollection of the equimatchable graphs as K3,2 is equimatchable yet is
not well-edge-dominated. Therefore, the study of well-edge-dominated graphs is
only different from the study of equimatchable graphs if one focuses on graphs of
girth at most 4.

Equimatchable graphs were first studied independently by Lewin [12] and
Meng [13] in 1974. Lesk, Plummer and Pulleyblank [11] gave a characteriza-
tion of equimatchable graphs that gave rise to a polynomial time algorithm for
recognizing membership in this class of graphs. Since then the structure of several
subclasses of equimatchable graphs have been investigated. Frendrup, Hartnell
and Vestergaard [7] proved that a connected equimatchable graph with no cycles
of length less than 5 is either a 5-cycle, a 7-cycle or belongs to the family C that
contains K2 and all the bipartite graphs one of whose partite sets consists of all
its support vertices. Büyükçolak, Gözüpek and S. Özkan [4] provided a complete
structural characterization of the connected, triangle-free equimatchable graphs
that are not bipartite. Yildiz [19] provided a linear time algorithm for recognizing
an equimatchable split graph.

In this paper, we completely characterize three classes of connected well-edge-
dominated graphs. Our main result on triangle-free, nonbipartite well-edge-dominated
graphs is the following result, which is proved in Section 4. We use the character-
ization, mentioned above, by Büyükçolak, et al. [4], of the equimatchable graphs
satisfying the hypothesis of Theorem 1 and determine which of these belong to
the smaller class of well-edge-dominated graphs. In what follows, the graph C∗7 is
the graph obtained from C7 by adding a chord between two vertices of C7 that are
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distance 3 apart.

Theorem 1. If G is a connected, nonbipartite, well-edge-dominated graph of girth
at least 4, then G ∈ {C5, C7, C

∗
7}.

A graph is a split graph if its vertex set admits a partition into two sets, one
of which is independent and the other which induces a complete graph. We show
that a connected split graph is well-edge-dominated if and only if it is a star,
a complete graph of order at most 4, a graph obtained from C5 by adding two
adjacent chords, or belongs to one of two families of graphs constructed from K4.
These are defined in Section 5.

In Section 6 we finish by showing that C4 is the only nontrivial, connected,
well-edge-dominated Cartesian product. Furthermore, we prove that the Cartesian
product of two connected, nontrivial graphs is well-edge-dominated if and only if
it is equimatchable.

Theorem 2. Let G and H be two connected, nontrivial graphs. The following
statements are equivalent.

(a) G�H is equimatchable.

(b) G�H is well-edge-dominated.

(c) G = H = K2.

2 Preliminaries

All the graphs considered in this paper are simple and have finite order. Let G
be a graph with vertex set V (G) and edge set E(G). We write n(G) = |V (G)|. If
n(G) ≥ 2, then G is nontrivial. For a positive integer k the set of positive integers
no larger than k is denoted [k]. Although edges are 2-element subsets of vertices, for
simplicity we will shorten the notation of an edge {u, v} to uv. If X ⊆ E(G), then
G−X is the graph with vertex set V (G) and edge set E(G)−X. For graphs G and
H, the Cartesian product G�H has vertex set {(g, h) : g ∈ V (G), h ∈ V (H)}.
Two vertices (g1, h1) and (g2, h2) are adjacent in G�H if either g1 = g2 and
h1h2 ∈ E(H) or h1 = h2 and g1g2 ∈ E(G). For g ∈ V (G) the H-fiber gH
is the subgraph of G�H induced by the set {(g, h) : h ∈ V (H)}. Similarly,
the G-fiber Gh for a given vertex h ∈ V (H) denotes the subgraph induced by
{(g, h) : g ∈ V (G)}. Note that gH is isomorphic to H and Gh is isomorphic to G.

Two distinct edges e and f in a graph G are adjacent if e ∩ f 6= ∅ and are
independent if e ∩ f = ∅. A vertex x of G is incident to an edge e if x ∈ e. If
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X ⊆ E(G), then the set of vertices covered by X is denoted by S(X) and is defined
by S(X) = {u ∈ V (G) : u is incident to an edge in X}. Let f ∈ E(G) and let
F ⊆ E(G). The closed edge neighborhood of f is the set Ne[f ] consisting of f
together with all edges in G that are adjacent to f . The closed edge neighborhood
of F is the set Ne[F ] defined by Ne[F ] = ∪f∈FNe[f ]. Let f ∈ F . The edge f is said
to dominate the set Ne[f ]. An edge g is called a private edge neighbor of f with
respect to F if g ∈ Ne[f ]−Ne[F −{f}]. If Ne[F ] = E(G), then F is called an edge
dominating set of G. The edge domination number of G, denoted by γ′(G), is the
smallest cardinality of an edge dominating set in G, and the upper edge domination
number of G is the largest cardinality, Γ′(G), of a minimal edge dominating set. A
matching in G is a set of independent edges. The matching number of G, denoted
α′(G), is the number of edges in a matching of largest cardinality in G, while the
lower matching number is the number of edges, denoted by i′(G), in a smallest
maximal matching. Any maximal matching M in G is clearly a minimal edge
dominating set of G, which gives

γ′(G) ≤ i′(G) ≤ α′(G) ≤ Γ′(G) .

A graphG is called equimatchable if i′(G) = α′(G) and is called well-edge-dominated
if γ′(G) = Γ′(G). Using the inequality above it is clear that the class of well-edge-
dominated graphs is a subclass of the equimatchable graphs.

It is clear that a graph is well-edge-dominated (respectively, equimatchable) if
and only if each of its components is well-edge-dominated (respectively, equimatch-
able). We use this fact throughout the paper together with the following lemmas.

A very useful tool in our study of well-edge-dominated graphs is the follow-
ing lemma, which is the “edge version” of a fact used by Finbow, Hartnell and
Nowakowski in [6]. The first statement follows from the fact that M ∪ D1 and
M ∪ D2 are both minimal edge dominating sets of G for any matching M and
any pair D1 and D2 of minimal edge dominating sets of the graph G − Ne[M ].
The second statement follows similarly since for a matching M of G and any pair
M1 and M2 of maximal matchings of G−Ne[M ], the two matchings M ∪M1 and
M ∪M2 are both maximal matchings of G.

Lemma 1. Let M be any matching in a graph G. If G is well-edge-dominated,
then G−Ne[M ] is well-edge-dominated. If G is equimatchable, then G−Ne[M ] is
equimatchable.

The next two results show that several common graph families contain only a
small number of well-edge-dominated graphs.

Lemma 2. A complete graph of order n is well-edge-dominated if and only if
n ≤ 4.
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Proof. Using the definition we see that the complete graphs of order at most 4 are
well-edge-dominated. For the converse suppose n ≥ 5. Label the vertices of Kn

as 1, . . . , n and consider the set D = {12, 13, . . . , 1(n − 1)}. We claim that D is
a minimal edge dominating set. Indeed, D − {1j} is not an edge dominating set
since jn is not adjacent to any edge in D−{1j}. Therefore, D is in fact a minimal
edge dominating set of cardinality n− 2 where n ≥ 5. On the other hand, we can
choose a matching of Kn of cardinality

⌊
n
2

⌋
. Note that n − 2 > n

2
when n ≥ 5.

Thus, Kn is not well-edge-dominated.

Any star is well-edge-dominated and we show in Theorem 4 that Kn,n is well-
edge-dominated for any n ≥ 1. No other complete bipartite graph is well-edge-
dominated as the following lemma shows.

Lemma 3. If 2 ≤ r < s, then Kr,s is not well-edge-dominated.

Proof. Assume 2 ≤ r < s and write the partite sets of Kr,s as {x1, . . . , xr} and
{y1, . . . , ys}. Note that {x1y1, . . . , x1ys} and {x1y1, x2y2, . . . , xryr} are two minimal
edge dominating sets of different cardinalities. Therefore, Kr,s is not well-edge-
dominated.

3 Randomly matchable graphs

A graph is said to be randomly matchable if every maximal matching is a per-
fect matching. That is, a randomly matchable graph is an equimatchable graph
whose matching number is half its order. Sumner [16] determined all the randomly
matchable graphs.

Theorem 3. ([16]) A connected graph is randomly matchable if and only if it is
isomorphic to K2n or Kn,n for n ≥ 1.

Using Theorem 3 we can now show which randomly matchable graphs are
well-edge-dominated.

Theorem 4. A connected graph G containing a perfect matching is well-edge-
dominated if and only if G = K4 or G = Kn,n for n ≥ 1.

Proof. Suppose first thatG contains a perfect matching and is well-edge-dominated.
It follows that G is equimatchable and every maximal matching is of size n(G)/2.
Therefore, G is randomly matchable and by Theorem 3, G = K2n or G = Kn,n for
n ≥ 1. By Lemma 2, K2n for n ≥ 3 is not well-edge-dominated. It follows that
G = K4 or G = Kn,n for n ≥ 1.

In the other direction, suppose G = K4 or G = Kn,n for n ≥ 1. One can easily
verify that K4 is well-edge-dominated. Therefore, we shall assume G = Kn,n and
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let A and B be the partite sets of G. We show that G is well-edge-dominated. Let
D be an edge dominating set of G. Suppose D does not cover a ∈ A and b ∈ B.
Then ab is not dominated by D, which is a contradiction. Thus, we may assume
D covers A which implies |D| ≥ n. Suppose that |D| > n. It follows that some
vertex of A is incident to two edges in D, say e and f . Note that D − {e} is an
edge dominating set of G since D − {e} covers A and every edge of G is incident
to exactly one vertex of A. Thus, |D| = n and G is well-edge-dominated.

4 Triangle-free nonbipartite graphs

In this section we prove there are only three nonbipartite, triangle-free, connected,
well-edge-dominated graphs. These three graphs are the 5-cycle, the 7-cycle and
C∗7 , which is depicted in Figure 1.

Figure 1: The graph C∗7

We will use the structural characterization of the class of triangle-free, equimatch-
able graphs in the recent paper of Büyükçolak, Gözüpek and Özkan [4]. To de-
scribe their characterization, they defined several graph families using the follow-
ing notation. Let H be a graph on k vertices v1, v2, . . . , vk and let m1,m2, . . . ,mk

be nonnegative integers. Then H(m1,m2, . . . ,mk) denotes the graph obtained
from H by repeatedly replacing each vertex vi with an independent set of mi

vertices, each of which has the same neighborhood as vi. For example, using
the graph G∗ in Figure 2, we see that G∗(1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0) = C7 and
G∗(2, 0, 0, 0, 3, 0, 0, 0, 2, 3, 0) = K4,6.

The following definition was made in [4].

Definition 1. ([4]) Let G∗ be the graph in Figure 2 and let F be the union of the
following six graph families.

1. F11 = {G∗(1, 1, 1, 1, 1, n, n, 0, 0, 0, 0) : n ≥ 1}

2. F12 = {G∗(1, 1, 1, 0, 1, n+ 1, n+ 1, 1, 0, 0, 0) : n ≥ 1}
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Figure 2: The graph G∗

3. F21 = {G∗(1, 1, 1, n− r − s+ 1, 1, r, n, s, 0, 0, 0) : n− 1 ≥ r ≥ 1, n− 1 ≥ s ≥
1, n ≥ r + s}

4. F22 = {G∗(1, 1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) : n−1 ≥ r ≥ 1, n−1 ≥
s ≥ 1, n ≥ r + s}

5. F3 = {G∗(1, 1, r + 1, s + 1, 1, 0, n− s, n− r, 0, 0, 0) : n− 1 ≥ r ≥ 1, n− 1 ≥
s ≥ 1}

6. F4 = {G∗(r+1, n+1, s+1, 1, 1, 0, 0, 0, 0, 0, n−r−s) : n−1 ≥ r ≥ 1, n−1 ≥
s ≥ 1, n ≥ r + s}

By analyzing each of the six families of equimatchable graphs listed above, we
determine all the well-edge-dominated graphs in F .

Proposition 1. If G ∈ F is well-edge-dominated, then G = C∗7 .

Proof. Throughout this proof when considering a graph from one of these six
families of graphs we will always assume the variables (that is, whichever of n, r
and s are used) satisfy the conditions in Definition 1 for that particular family.

First, let G = G∗(1, 1, 1, 1, 1, n, n, 0, 0, 0, 0) ∈ F11. Note first that if n = 1,
then G = C∗7 depicted in Figure 1. It is straightforward to show that C∗7 is well-
edge-dominated. Suppose n ≥ 3 and let {x1, . . . , xn} be the set of vertices that
replace u6 and let {y1, . . . , yn} be the set of vertices that replace u7. Note that
Kn−1,n is a component of G − Ne[{x1u5, u3u4}]. By Lemma 3, we infer that G is
not well-edge-dominated. Therefore, we shall assume n = 2. Now, {u1u2, u3u4} is
a matching, and K2,3 is a component of G − Ne[{u1u2, u3u4}]. By Lemma 1 and
Lemma 3, it follows that G is not well-edge-dominated.

Next, let G = G∗(1, 1, 1, 0, 1, n + 1, n + 1, 1, 0, 0, 0) ∈ F12. Let {x1, . . . , xn+1}
be the set of vertices that replace u6 and let {y1, . . . , yn+1} be the set of vertices
that replace u7. Suppose first that n ≥ 2. Note that Kn,n+1 is a component of G−
Ne[{x1u5, u3u8}]. Since Kn,n+1 is not well-edge-dominated by Lemma 3, it follows
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from Lemma 1 that G is not well-edge-dominated. Therefore, we shall assume
n = 1. In this case, both {x1y1, x2y2, u1u5, u3u8} and {x1y1, x2y1, u8y1, u1u5, u2u3}
are both minimal edge dominating sets, and hence G is not well-edge-dominated.

Next, let G ∈ F21 ∪ F22 ∪ F4. Note that n ≥ 2 for every such G. Suppose
G = G∗(1, 1, 1, n−r−s+1, 1, r, n, s, 0, 0, 0) ∈ F21. Note thatG−Ne[{u2u3, u1u5}] =
Kn,n+1. If G = G∗(1, 1, 1, n − r − s, 1, r + 1, n + 1, s + 1, 0, 0, 0) ∈ F22, then
G−Ne[{u1u5, u2u3}] = Kn+1,n+2. If G = G∗(r+1, n+1, s+1, 1, 1, 0, 0, 0, 0, 0, n−r−
s) ∈ F4, then G−Ne[{u4u5}] = Kn+1,n+2. Therefore, for every G ∈ F21∪F22∪F4,
we see by Lemmas 1 and 3 that G is not well-edge-dominated.

Finally, assume G ∈ F3 and G = G∗(1, 1, r+1, s+1, 1, 0, n−s, n−r, 0, 0, 0). Let
{x1, . . . , xs+1} be the set of vertices that replace u4. The complete bipartite graph
Kn−s+r+1,n−r+s is a component of G−Ne[{u1u2, u5x1}]. Observe that n−s+r+1 6=
n− r+ s for otherwise 2r+ 1 = 2s, which is not possible. Furthermore, using the
conditions n − 1 ≥ r ≥ 1 and n − 1 ≥ s ≥ 1 we see that n − s + r + 1 ≥ 3 and
n− r + s ≥ 2. It follows by Lemma 3 that G is not well-edge-dominated.

Definition 2. ([4]) Let G∗ be the graph in Figure 2 and let G be the union of the
following seven graph families.

1. G11 = {G∗(m+ 1,m+ 1, 1, 0, 1, 1, n+ 1, n+ 1, 0, 0, 0) : n ≥ 1,m ≥ 1}

2. G12 = {G∗(m+1,m+1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) : m ≥ 1, n−1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s}

3. G21 = {G∗(1, 1, 1, n − r − s + 1, 1, r, n, s, 0,m,m) : m ≥ 1, n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1, n ≥ r + s}

4. G22 = {G∗(1, 1, r + 1, s + 1, 1, 0, n − s, n − r, 0,m,m) : m ≥ 1, n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1}

5. G23 = {G∗(r + 1, n + 1, s + 1, 1, 1,m,m, 0, 0, 0, n − r − s) : m ≥ 1, n − 1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s}

6. G31 = {G∗(m − k − ` + 1, 1, 1, n − r − s + 1, 1, r, n, s, `,m, k) : n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1, n ≥ r + s,m− 1 ≥ ` ≥ 1,m− 1 ≥ k ≥ 1,m ≥ k + `}

7. G32 = {G∗(k + 1, ` + 1, 1, n − r − s + 1, 1, r, n, s, 0,m − `,m − k) : n − 1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s,m− 1 ≥ ` ≥ 1,m− 1 ≥ k ≥ 1,m ≥ k + `}

As we did in Proposition 1, an analysis of all the graphs in G will show that
no such graph is well-edge-dominated.

Proposition 2. If G ∈ G, then G is not well-edge-dominated.
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Proof. Throughout this proof when considering a graph from one of these seven
families of graphs we will always assume the variables (that is, whichever of
n,m, r, s, k and ` are used) satisfy the conditions in Definition 2 for that particular
family.

First, suppose G ∈ G11 ∪ G12. Let {x1, . . . , xm+1} be the set of vertices that
replace u2 and let {y1, . . . , ym+1} be the set of vertices that replace u1. If G =
G∗(m+1,m+1, 1, 0, 1, 1, n+1, n+1, 0, 0, 0) ∈ G11, then Kn+1,n+2 is a component of
G−Ne[{x1u3, y1u5}]. If G = G∗(m+1,m+1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) ∈
G12, then Kn+1,n+2 is a component of G − Ne[{x1u3, y1u5}]. Since n + 1 ≥ 2, it
follows from Lemmas 1 and 3 in both cases that G is not well-edge-dominated.

Next, suppose G = G∗(1, 1, 1, n− r − s+ 1, 1, r, n, s, 0,m,m) ∈ G21. Note that
this implies n ≥ 2 and G − Ne[{u1u5, u2u3}] contains the component Kn,n+1. By
Lemmas 1 and 3 we infer that G is not well-edge-dominated.

Next, suppose G = G∗(1, 1, r + 1, s + 1, 1, 0, n − s, n − r, 0,m,m) ∈ G22. Let
{x1, . . . , xm} be the set of vertices that replace u11 and let {y1, . . . , yr+1} be the
set of vertices that replace u3. The complete bipartite graph Kn−r+s+1,n−s+r+1 is
a component of G − Ne[{x1u2, u1u5}]. Note that n − r + s + 1 ≥ s + 2 ≥ 3 and
n−s+r+1 ≥ r+2 ≥ 3. If n−r+s+1 6= n−s+r+1, then Kn−r+s+1,n−s+r+1 is not
well-edge-dominated by Lemma 3. On the other hand, if n−r+s+1 = n−s+r+1,
then G − Ne[{u2y1, u1u5}] has a component isomorphic to Kn−r+s+1,n−s+r, which
is not well-edge-dominated. Again by Lemmas 1 and 3 we conclude that G is not
well-edge-dominated.

Next, suppose G = G∗(r + 1, n + 1, s + 1, 1, 1,m,m, 0, 0, 0, n − r − s) ∈ G23.
The graph Kn+1,n+2 is a component of G − Ne[u4u5]. Using Lemmas 1 and 3 we
infer that G is not well-edge-dominated.

Next, suppose G = G∗(m− k− `+ 1, 1, 1, n− r− s+ 1, 1, r, n, s, `,m, k) ∈ G31.
Let {x1, . . . , xm−k−`+1} be the set of vertices that replace u1. Note that n ≥ 2 and
that Kn,n+1 is a component of G − Ne[{x1u5, u2u3}]. By Lemmas 1 and 3, this
implies that G is not well-edge-dominated.

Finally, supposeG = G∗(k+1, `+1, 1, n−r−s+1, 1, r, n, s, 0,m−`,m−k) ∈ G32.
Note that n ≥ 2. Let {x1, . . . , x`+1} be the set of vertices that replace u2 and let
{y1, . . . , yk+1} be the set of vertices that replace u1. Since Kn,n+1 is a component
of G−Ne[{x1u3, y1u5}], we conclude by Lemmas 1 and 3 that G is not well-edge-
dominated.

Theorem 1 If G is a connected, nonbipartite, well-edge-dominated graph of girth
at least 4, then G ∈ {C5, C7, C

∗
7}.

Proof. It is straightforward to check that every graph in F ∪ G is connected, has
girth 4 but is not bipartite. If we consider only nonbipartite graphs, then the main
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result of Büyükçolak, et. al [4, Theorem 36] states that a graph G is a connected,
nonbipartite, triangle-free equimatchable graph if and only if G ∈ F∪G∪{C5, C7}.
Applying Proposition 1 and Proposition 2 completes the proof.

5 Split graphs

Recall that a graph is a split graph if its vertex set can be partitioned into an
independent set and a set that induces a complete graph. In this section we
prove a complete characterization of the family of split graphs that are well-edge-
dominated. We will use the following definitions. Let H1 be the family of graphs
obtained by appending any finite number of leaves to a single vertex of K4 and
let H2 be the family of graphs obtained from K4 by removing any edge uv and
appending at least one leaf to u. Let H3 be the graph of order 5 obtained from
K4− e by adding a new vertex adjacent to one of the vertices of degree 2 and one
of the vertices of degree 3.

Lemma 4. If G ∈ {K2, K3, K4, H3} ∪ H1 ∪ H2 ∪ {K1,n : n ∈ N}, then G is
well-edge-dominated.

Proof. By Lemma 2, K2, K3, and K4 are well-edge-dominated. It is easy to see
that every minimal edge dominating set of a nontrivial star K1,n consists of exactly
one edge. Therefore, K1,n is well-edge-dominated. It is straightforward to check
that all minimal edge dominating sets of H3 have cardinality 2.

Next, assume G ∈ H1. Suppose the vertices v1, v2, v3 and v4 of G induce a
complete graph and v1 is the support vertex. Let D be a minimal edge dominating
set of G. First assume that D contains an edge, say v1w, where w is a leaf. Note
that D cannot contain more than one edge incident with v1 since D is minimal.
The only edges not dominated by v1w are v2v3, v2v4 and v3v4. Exactly one of
those edges must be in D in order for it to be a minimal edge dominating set.
Thus, |D| = 2. Next, assume D does not contain an edge incident to a leaf. Then
D ∩ {v1v2, v1v3, v1v4} 6= ∅. Without loss of generality, assume v1v2 ∈ D. The
only edge of G not dominated by v1v2 is v3v4, so by minimality |D| = 2 and G is
well-edge-dominated.

Now, assume G ∈ H2. Label the vertices of the K4 as v1, v2, v3 and v4, remove
the edge v1v3, and append leaves to vertex v1. Let D be a minimal edge dominating
set of G. Using a similar argument to the one above we conclude that G is well-
edge-dominated.

To show that we have identified all well-edge-dominated split graphs, we use
the following result provided by Yildiz in [19].
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Theorem 5 ([19]). Let G be a simple undirected graph on n ≥ 4 vertices with
no isolated vertices. Let r and p be the number of vertices of degree 1 and n − 1,
respectively. G is an equimatchable split graph if and only if one of the following
holds:

(i) p = n.

(ii) r = n− 1 and p = 1.

(iii) p = 1, r ≥ 2, n−r is even, and all vertices have degree 1, n−r−1, or n−1.

(iv) p = 0, r ≥ 2, n − r is even, there are two vertices x and y with xy 6∈ E(G)
such that deg(x) = n−2, deg(y) = n−r−2, and all vertices in V (G)−{x, y}
have degree 1 or n− r − 1.

(v) There are two vertices x and y such that n is odd, deg(x)+deg(y) = p+n−2
and all vertices in V (G)− {x, y} have degree n− 1 or n− 2.

Theorem 6. A nontrivial, connected split graph G is well-edge-dominated if and
only if G ∈ {K2, K3, K4, H3} ∪ H1 ∪H2 ∪ {K1,n : n ∈ N}.

Proof. By Lemma 4, each graph in {K2, K3, K4, H3} ∪ H1 ∪ H2 ∪ {K1,n : n ∈ N}
is well-edge-dominated and is a split graph by definition.

For the converse let G be a connected, well-edge-dominated split graph. We
let V (G) = K ∪ I where I is an independent set, K = {x1, . . . , xk}, and G[K] is a
clique. Since G is equimatchable, G must be in one of the five classes provided in
the statement of Theorem 5. As in Theorem 5, we shall assume the order of G is
n, and G contains r vertices of degree 1 and p vertices of degree n− 1. If G is in
class (i), then G = Kn and by Lemma 2, G ∈ {K2, K3, K4}. If G is in class (ii),
then G = K1,n−1.

Therefore, we shall assume first that G is in class (iii). Let L = {a1, . . . , ar}
be the set of vertices of degree 1, all of which are adjacent to x1. By the given
conditions in class (iii), G−L is a clique of even order 2s for some s ≥ 1. Since no
vertex in this clique has degree 1, we get 2s ≥ 4. By Lemma 1, G−Ne[{x1a1}] is a
well-edge-dominated clique of order 2s−1. It follows from Lemma 2 that G ∈ H1.

Next, assume G is in class (iv). Thus, p = 0, r ≥ 2, n− r is even, there are two
vertices x and y with xy 6∈ E(G) such that deg(x) = n − 2, deg(y) = n − r − 2,
and all vertices in V (G)− {x, y} have degree 1 or n− r − 1. Since r ≥ 2, x ∈ K
which implies that y ∈ I. We shall assume x = x1. It follows that y is adjacent
to all vertices of K − {x1} as deg(y) = n − r − 2. Furthermore, since all vertices
in I − {y} have degree 1 or n− r − 1, I − {y} only contains vertices of degree 1.
Note that n − r is even and therefore |K| is odd. If |K| = 1, then y is isolated
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which contradicts our assumption that G is connected. If |K| = 3, then G ∈ H2.
Therefore, we shall assume |K| ≥ 5. Let ` be some vertex of degree 1 and notice
G−Ne[{`x1}] = K|K| is not well-edge-dominated. Hence, this case cannot occur.

Lastly, assume G is in class (v). There exist two vertices x and y such that n is
odd, deg(x)+deg(y) = p+n−2 and all vertices in V (G)−{x, y} have degree n−1
or n− 2. If |I| ≥ 3, then there exists a vertex in I −{x, y} of degree neither n− 1
or n− 2. Thus, we may assume |I| ≤ 2. Suppose first that |I| = 1. We shall write
I = {u}. If u is adjacent to every vertex in K, then G is a clique and by Lemma 2
we see that G = K3 since n is odd. So we shall assume N(u) = {x1, . . . , xs}
where s < k. Must not use p here since p has a global meaning in the proof. I’ve
changed it to s. Since n is odd, k is even. Let M = {x1x2, x3x4, . . . , xk−1xk} and
let M ′ = {x1x2, x1x3, . . . , x1xk−1}. We see that M is a maximal matching and
therefore M is a minimal edge dominating set. In addition, note that M ′ is also
a minimal edge dominating set since M ′ − {x1xj} does not dominate xjxk, for
2 ≤ j ≤ k − 1. It follows that k − 2 = |M ′| = |M | = k/2, which gives k = 4.

If s = 1, then G ∈ H1. If s = 2, then G is not well-edge-dominated since
{ux1, x1x3, x1x4} and {ux1, x2x4} are minimal edge dominating sets. If s = 3,
then {x1x2, x3x4} and {ux1, ux2, ux3} are minimal edge dominating sets so G is
not well-edge-dominated. Thus, we assume for the remainder of the proof that
|I| = 2. In particular, we assume that G does not have a clique of order n− 1. I
think we need this assumption to be able to assume that deg(u) < n− 2 for each
u ∈ I since the “clique-independent set partition” is not always unique in a split
graph.

It follows that I = {x, y} as deg(u) < n− 2 for each u ∈ I. For the time being
we shall assume k ≥ 4. Suppose first that we can find 1 ≤ i < j ≤ k such that xi
is adjacent to x and xj is adjacent to y. Reindexing if necessary, we may assume
x1 is adjacent to x and x2 is adjacent to y. Let M = {x3x4, x5x6, . . . , xk−2xk−1}.
Thus, M ∪ {xx1, yx2} and M ∪ {x1x2} are two different maximal matchings in G,
which is a contradiction. Therefore, we may assume that x and y are adjacent to
exactly one vertex in K, say x1. This implies |K| = 1 for otherwise K contains
vertices of degree at most n− 3, which is a contradiction. Hence, we shall assume
k ∈ {1, 2, 3}. Furthermore, n is assumed to be odd so k ∈ {1, 3}. If k = 1,
G = K1,2. So we shall assume k = 3. Moreover, we may assume x1 is adjacent
to x. Let us assume first that G contains a vertex of degree n − 1, say x1. If
{xx2, xx3, yx2, yx3} ∩ E(G) = ∅, then G is not equimatchable. Thus, assume
xx2 ∈ E(G) without loss of generality. If yx3 6∈ E(G) and xx3 6∈ E(G), then
again G is not equimatchable. Therefore, we will assume first that yx3 ∈ E(G).
If G contains no other edges, then G = H3. On the other hand, one can easily
verify that adding any additional edges to G will result in a graph which is not
well-edge-dominated. Next, we will assume yx3 6∈ E(G) and xx3 ∈ E(G). If G
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contains no other edges, then G ∈ H1. Thus, we shall assume yx2 ∈ E(G). One
can easily verify that G is not well-edge-dominated. Finally, suppose G does not
contain a vertex of degree n − 1. Without loss of generality, we may assume xx1
and yx2 are edges in G and xx2 and yx1 are not edges in G. If G contains no other
edges, then G is not equimatchable. Therefore, we may assume yx3 ∈ E(G). If G
contains no other edges, then G ∈ H2. If xx3 ∈ E(G), then G = H3.

6 Cartesian products

This section is devoted to proving our characterization of well-edge-dominated
Cartesian products. In the process we show that among connected graphs that
are the Cartesian product of nontrivial factors, the concepts of equimatchable and
well-edge-dominated coincide.

Lemma 5. Let G and H be nontrivial, connected graphs such that at least one
of G or H has order at least 3. If G has a perfect matching, then G�H is not
well-edge-dominated.

Proof. Suppose G admits a perfect matching M and suppose for the sake of con-
tradiction that G�H is well-edge-dominated. By “copying” M to each G-fiber we
see that G�H also has a perfect matching. Suppose G�H has order 2n. Since
3n ≥ 6, it follows by Theorem 4 that G�H = Kn,n. This is a contradiction
since no complete bipartite graph of order at least 6 is the Cartesian product of
nontrivial factors.

We now prove Theorem 2, which is restated here for ease of reference.

Theorem 2 Let G and H be two connected, nontrivial graphs. The following
statements are equivalent.

(a) G�H is equimatchable.

(b) G�H is well-edge-dominated.

(c) G = H = K2.

Proof. The Cartesian product K2�K2 is clearly well-edge-dominated, so statement
(c) implies (b). As noted in Section 2, the well-edge-dominated graphs are a
subclass of the class of equimatchable graphs. Thus (b) implies (a). To prove
the final implication suppose G and H are connected and nontrivial such that
G�H is equimatchable. Suppose first that at least one of the graphs, say G,
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contains a path of order 4. Let V (G) = {g1, g2, . . . , gp} for some p ≥ 4 such that
{g1g2, g2g3, g3g4} ⊆ E(G). Let V (H) = {h1, . . . , hq} such that h1h2 ∈ E(H) and
let M be the matching of G�H defined by

M =

(
p⋃

i=4

{(gi, h1)(gi, h2)}

)
∪

(
q⋃

j=3

{(g1, hj)(g2, hj)}

)
∪

(
q⋃

j=3

{(g3, hj)(g4, hj)}

)
.

One of the components of G�H−Ne[M ] is isomorphic to either P3�P2 or K3�P2.
Both of these have maximal matchings of size 2 and 3 and are therefore not well-
edge-dominated. This contradicts Lemma 1, which allows us to assume that nei-
ther G nor H contains a path of order 4. We infer that {G,H} ⊆ {K3, K2}∪{K1,n :
n ≥ 2}. We now show that among all such Cartesian products the only one that
is equimatchable is K2�K2.

None of K3�K2, K3�K3, or K3�K1,2 is equimatchable. Indeed, it is easy to
see that K3�K2 has maximal matchings of sizes 2 and 3, while both K3�K3 and
K3�K1,2 admit maximal matchings of sizes 3 and 4. Now let n ≥ 3, let V (K1,n) =
{x, x1, . . . , xn}, let E(K1,n) = {xxi : i ∈ [n]}, and let V (K3) = {a, b, c}. The
sets of edges M1 = {(a, x)(c, x), (b, x)(b, x1)} ∪ {(a, xi)(c, xi) : i ∈ [n]} and M2 =
{(a, x)(a, x1), (b, x)(b, x2), (c, x)(c, x3), (b, x1)(c, x1), (a, x2)(c, x2), (a, x3)(b, x3)} ∪
{(a, xj)(c, xj) : 4 ≤ j ≤ n} are maximal matchings of size n + 2 and n + 3,
respectively.

If n ≥ 2, then K2�K1,n has a perfect matching but is not equimatchable by
Theorem 3. For m ≥ 3, let V (K1,m) = {y, y1, . . . , ym}, and let E(K1,m) = {yyi :
i ∈ [m]}. For K1,n as described in the paragraph above, let M = {(xi, y)(xi, y1) :
i ∈ [n]}. This set of edges is a matching in K1,n�K1,m, and K1,n�K1,m − Ne[M ]
has a component isomorphic to the graph obtained from m − 1 vertex disjoint
copies of the star K1,n and an edge uv by adding m− 1 edges making u adjacent
to the centers of the disjoint stars. This graph is not equimatchable since it has
maximal matchings of sizes m−1 and m. Having now checked all the possibilities,
we conclude that G = H = K2. Therefore, statement (a) implies (c).

7 Open Questions

In their study of connected, equimatchable graphs of girth at least 5, Frendrup,
Hartnell and Vestergaard [7] characterized the connected, well-edge-dominated
graphs of girth at least 5. In particular, they proved the following result.

Theorem 7. ([7]) If G is a connected graph with g(G) ≥ 5, then G is well-edge-
dominated if and only if G ∈ {K2, C5, C7} or G is bipartite with partite sets V1
and V2 such that V1 is the set of all support vertices of G.
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In Theorem 1 of this paper we showed that only one additional graph, namely
C∗7 , is added to the list of connected, well-edge-dominated graphs if the girth
restriction is lowered to 4 but we now require that the graph be nonbipartite.

A natural problem now presents itself.

Problem 1. Find a structural characterization of the class of connected, bipartite
graphs of girth 4 that are well-edge-dominated.

By Theorem 4 this class contains Kn,n, for any n ≥ 2 and by Theorem 2 it
does not contain any nontrivial Cartesian products other than K2�K2.

For graphs that contain a triangle, we have characterized the connected, split
graphs that are well-edge-dominated in Theorem 6. Determining the structure for
arbitrary well-edge-dominated graphs of girth 3 is an interesting problem.

Problem 2. Find a structural characterization of the class of connected graphs of
girth 3 that are well-edge-dominated.
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