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Abstract

We define &-limited packing in a graph, which generalizes a 2-packing
in a graph, and give several bounds on the size /efianited packing. One
such bound involves the domination number of the graph, anelWwe show
all trees attaining the bound can be built via a simple secgiehoperations.
We consider graphs where every maximal 2-limited packire msaximum
2-limited packing, and characterize their structure in embar of cases.

1 Introduction

Consider the following scenarios:

Network Security: A set of sensors are to be deployed to tigveronitor
a facility. Too many sensors close to any given location i fédwcility can be
detected. Where should the sensors be placed so that thauatiaer of sensors
deployed is maximized?

NIMBY: A city requires a large number of obnoxious facilgiésuch as garbage
dumps), but no neighborhood should be close to too many saailities, nor
should the facilities themselves be too close together. ré/gleould the facilities
be located?

Market Saturation: A fast food franchise is moving into a nety. Market
analysis shows that each outlet draws customers from Isithihediate city block
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and from nearby city blocks. However it is also known that egicity block
cannot support too many outlets nearby. Where should thetsie placed?

A graph model of these scenarios might maximize the size @&reex subset
subject to the constraint that no vertex in the graph is reamntany of the selected
vertices. The well-known packing number of a graph is theimam size of a
set of verticesB such that for any vertex the closed neighborhood of N{[v],
satisfies| N[v] N B] < 1. In this paper we consider relaxing the constraint to
|N[v] N B| <k, for some fixed integek.

Our notation is standard. Specifically, given a grépthenV (G) is the set of
vertices ofG, v(G) is the domination number @¥, p(G) is the 2-packing number,
d(G) is the minimum degree of a vertex @, A(G) is the maximum degree of
a vertex inG, and for a vertew € V(G), N[v] is the closed neighborhood of
which is the set of vertices adjacentit@long withwv itself. The girth of a graph is
the length of the shortest cycle in the graph, which is salzktmfinite if the graph
is a forest. A vertex of degree one is a leaf, and a stem is ex#rat is adjacent
to at least one leaf. The symbB} denotes the path withvertices, and if a vertex
v in atree is adjacent to a stem of degree 2, we willsaas aP, attached.

Definition 1. Let G be a graph, and let € N. A set of verticed3 C V(G) is
called ak-limited packing inG provided that for allv € V(G), we have N[v] N
B| < k.

In [1], the author introduces a notation unifying the dgstiion of many graph
theoretic parameters. Specifically, in the context of amgigephG, a setB C
V(QG) is called ap<y, 0<i—1]-set provided any vertexin G has|N[v] N B| < k,
which is what we are calling &-limited packing. Similarly &-limited packing in
a graph would be called[a<2, o<1 ]-set.

A k-limited packingB in a graphG is calledmaximalif there does not exist
ak-limited packingB’ in G such thatB C B’. A k-limited packingB in a graph
G is calledmaximumif there does not exist A-limited packingB’ in G such that
|B| < |B'|.

For example, on the patR; as indicated in Figure 1, the sef$,3,5} and

1 2 3 4 5
® ® ® ® ®

Figure 1: The pathPs
{1,2,4,5} are 2-limited packings irP;. Both sets are maximal 2-limited pack-

ings in P, and the se{1,2,4,5} is a maximum 2-limited packing if’s. We are
interested in the maximum size ofdimited packing in an arbitrary graph.
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Definition 2. LetG be a graph, and lek € N. Thek-limited packing number of
G, denotedL(G), is defined by

Li(G) = max{|B|| B is ak-limited packing inG }.

If a subset of vertice®3 is a 2-packing then the distance between any pair of
distinct vertices inB is at least 3, in which casgV|v] N B| < 1 for any vertex
v in the graph, s@ is also al-limited packing. But al-limited packingB has
|N[v] N B| < 1 for any vertexv, and so the distance between any pair of distinct
vertices inB is at least 3. Thusg-limited packings and (distance) 2-packings are
the same, and sb; (G) = p(G).

Since ak-limited packing is also &k + 1)-limited packing we immediately
obtain the following inequalities:

p(G) = L1(G) < L2(G) < ... < La@@)+1(G) = [V(G)].

We collect some easily verified facts about #h&mited packing numbers of
some familiar graphs in the following lemma.

Lemma 3. Letm, k,n € Nwithm > 3. Then,

o Li(Pn) =151,

o Lo(Pn) = [%]

o Li(Cm) = [17]

o Ly(C) = 3]
(

°
=

1 if k=1,
k(Kmn) = . . .
min{k — 1,m} + min{k — 1,n} ifk> 1.

2 Bounds onk-limited packings

In this section we bound the-limited packing number of a grap@¥. First we
observe some connections to domination numbers.of

For a positive integek < 6(G) + 1, a subsetD of V(G) is called ak-tuple
dominating set irG if |[N[v] N D| > k for every vertexv € V(G). The minimum
cardinality of ak-tuple dominating set iidz is denoted byy.(G). The familiar
domination number is thug(G) = vx1(G).



Lemma 4. LetG be a graph with maximum degréeand minimum degre& and
let { B, R} be a partition of// (G). Then:

1. Ifk <d—1andBisa(d—k)-limited packing inG, thenRis a(k+1)-tuple
dominating set irG.

2. Ifk < A—-1andRis a(k + 1)-tuple dominating set ifi7, then B is a
(A — k)-limited packing inG.

Proof. Let B be a(d — k)-limited packing inG. Then for any vertex in G
we have|N[v] N B| < § — k. Since|N[v]| > 6 + 1, we have|N[v] N R| >
(60+1)—|NpwNB| > (+1)—(6—k) =k+ 1 ThusRis a(k + 1)-tuple
dominating set irG.

This establishes (1). The proof of (2) is similar and is oeuitt O

When the graph is regular even more can be said.

Lemma 5. If G is anr-regular graph, andc < r — 1, then

Lr—k(G) + vxk41)(G) = [V(G)].

Proof. Lemma 4 implies ifB is a maximum(s — k)-limited packing inG, then
R =V (G) — Bis a(k + 1)-tuple dominating set id7, and soLs_x(G) = |B| =
V(G)| = |R| < [V(G)| = vx(k+1)(G). Also, if Ris a minimum(k + 1)-tuple
dominating set ir7, thenB is a(A — k)-limited packing inG, and sdua_;(G) >
|B| = |[V(G)| — |R| = [V(G)| = Vx(k+1)(G). WhenG is r-regular,r = 6§ = A,
which impliesL, 1 (G) = |V (G)|=7x(k+1)(G), from which the theorem assertion
follows. O

The following bound also involves the domination numbed arises naturally
when considering linear programs associated witimited packings.

Lemma 6. If G is a graph, therL;(G) < kv(G). Furthermore, equality holds if
and only if for any maximum k-limited packidg)in G and any minimum dominat-
ing setD in G both the following hold:

1. Foranyb € B we have N[b] N D| = 1.
2. Foranyd € D we havgN[d] N B| = k.

Proof. Let B be any maximunk-limited packing inGG, and letD be any minimum
dominating set inG. LetU = {(b,d)|b € B,d € D, andb € N[d]}. For every
b € B, there is at least oné € D such that) € N|[d] sinceD is a dominating set
for G, and hencéB| < |U|. For eachi € D, we know|N[d] N B| < k, sinceB is
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a k-limited packing, and hence there are at moserticesb € B with (b,d) € U,
and soU| < k|D|. ThusLi(G) = |B| < |U| < k|D| = k~(G).

From these inequalities we ség(G) = kv(G) holds if and only if|N[b] N
D| =1 for eachb € B, and|N[d] N B| = k for eachd € D. As B is an arbitrary
maximumék-limited packing inG, andD is an arbitrary minimum size dominating
set inG, the result follows. O

One can bound the size ofkdimited packing solely in terms of the number of
vertices inG.

Lemma 7. If G is a connected graph witlV (G)| > 3, thenLy(G) < %\V(G)L

Proof. Let B be a maximum 2-limited packing i&. We count the numbet, of
edges with an endpoint in both andV (G) — B.

SinceB is a 2-limited packing, the induced subgra@hB] has maximum de-
gree 1, and hence the component&0B| are either isolated vertices £%’s. Since
G is connected, an/(G)| > 3, each component i&[B] has an edge (i) to
some vertex i/ (G) — B, and sce is at least as large as the number of components
in G[B], and sdB|/2 < e. SinceB is a 2-limited packing each vertexn(G)— B
has at most two neighbors . Hencee < 2(|V(G)| — |B|). Together these in-
equalities imply|B|/2 < 2(|V(G)| — | B|), which implies| B| < 3|V (G)]. O

The upper boundB| = %|V(G)| is achieved only if both inequalities in the
proof hold with equality. This means every vertexW{G) — B has twoP’s
attached, and all the vertices in theBgs are in B. Given any graphd we can
attach twoPs’s to every vertex in the graph to obtain a new graph contgitin
where this bound is met; in particular the newly added vestiare a 2-limited
packing inG.

If we impose constraints on the minimum degéé€&’) of G, then similar rea-
soning gives the following.

Lemma 8. If G is a connected graph, anf{G) > k, thenL(G) < 25|V (G)|.

This bound can always be achieved; &be any connected graph, and to each
vertexv in H attach a news, by makingv adjacent to each vertex in th€,. The
resulting graph hasLy(G) = k|V(H)| = kiH\V(G)L Whenk = 2 the cycles
Cs,,, are another family of graphs which achieve this bound.

When the graph is regular stronger bounds are possible. dllogving is rep-
resentative.

Lemma 9. LetG be a cubic graph. Thes|V (G)| < Ly(G) < 1|V (G)|.



3 Uniformly 2-limited graphs

A greedy algorithm will quickly find a maximal-limited packing in a graph, but
that set will not usually be a maximukslimited packing. In this section we con-
sider graphs where every maxima?2-limited packing inG is a maximumz2-
limited packing. This is the same as saying that every maxiinited packing
in G has the same cardinality.

Definition 10. A graph G is said to be uniformly2-limited if every maxima®-
limited packing inG has the same cardinality.

For exampleP; is uniformly 2-limited, but P, and P5 are not. The following
gives a sufficient condition for a graghto be uniformly 2-limited.

Lemma 11. Let G be a graph, and le{si, so, ..., s} be the set of stems .
Supposeg N|s;]|1 < i < m} is a partition of V(G), and if a sten; is adjacent
to exactly one leaf, then all non-leaf neighborsspthave degree 2. The@ is
uniformly 2-limited.

Proof. Let B be a maximal 2-limited packing it¥, and so|N[s;] N B| < 2 for
each sters;. We will first show|N|s;] N B| = 2 for eachs;. On the contrary
suppose some stesphas|Ns;] N B| < 2.

One possibility is that the stemy is adjacent to at least two leaves. Since
|B N NJs;]| <2, one of the leaves, sdy, is notinB. ButthenB U {l;} is also a
2-limited packing, contradicting the maximality &*.

The other possibility is that the stem is adjacent to exactly one legf If
l; ¢ BthenBU {l;} is a 2-limited packing, contradicting the maximality Bf So
we must havé; € B, and alsos; ¢ B since|N|[s;]NB| < 2. ThesetB’ = BU{s;}
is also a 2-limited packing id-; in particular any non-leaf neighberof s; must
satisfy |[N[v] N B’| < 2 sincev has degree 2 and ¢ B’. So again we have
contradicted the maximality aB.

Thus each sters; has|N|[s;] N B| = 2, and as the s€tN[s;]|1 <i <m}isa
partition of V(G), |B| = > 1 <,<,,|N[si] N B| = 2m. But asB was an arbitrary
maximal 2-limited packing inG, every maximal 2-limited packing ig’ has the
same siz&m. O

The main result of this section is that the conditions of Leanbi are also
necessary when a uniformly 2-limited graphcontains leaves and has girth at
least 11. We will use the following notational convenience.

Definition 12. Denote by4; the set of uniformly 2-limited graphs;

Uy = {G| G is uniformly 2-limited graph.



We first prove a series of conditions necessary for inclusidi,.
Lemma 13. If the graphG contains two adjacent stems, théng Us.

Proof. Supposei contains adjacent stems and so, with adjacent leaves, l-
respectively. Extendsi,s2} to B, a maximal 2-limited packing irG. Since
{s1,s2} C B, ands; ands; are adjacent, and is a 2-limited packing inG,

l; andly are not inB. The setB’ = (B — {s2}) U {l1,l2} is also a 2-limited
packing inG, and|B’| = |B| + 1. Thus there are maximal 2-limited packings in
G of different sizes, s6/ ¢ Us. O

Lemma 14. If G has two stems,, s5 such thats; and s, are distance 2 apart, and
either s, is adjacent to at least two leaves or has degree 2, the@ ¢ Us.

Proof. Firstly suppose stems, so are distance 2 apart, each being adjacent to a
vertexz, andss is adjacent to leak, ands; is adjacent to two leaves, ;. Extend
{s2,2,11} to B, a maximal 2-limited packing irz. BecauseB is a 2-limited
packing inG already containing sz, z, [ }, it cannot also contaify, or /. Then
B’ = (B — {z}) U{ls,1}} is a 2-limited packing irG, and|B’| = |B| + 1. Thus
there are maximal 2-limited packings @ of different sizes, s ¢ Us.

Next suppose stems, s, are distance 2 apart, each being adjacent to a vertex
z, ands; has degree 2, and is adjacent to leaf;, ands, is adjacent to leaf,.
In this case extendlss, z,[; } to B, a maximal 2-limited packing id. In this case
B' = (B—{z})U{s1,l2} is also a 2-limited packing i, and| B’| = | B|+1. Thus
there are maximal 2-limited packings @of different sizes, and s@ ¢ . O

Lemma 15. If G is a graph with girth at least 5, with two stems at distance two
apart, thenG ¢ Us.

Proof. Let G be a graph with girth at least 5, and gt s, be stems of~ at distance
two apart, with a common neighber In light of Lemma 14, we may assurne

is adjacent to exactly one le&f and at least one non-leaf vertex # z, and
similarly s, is adjacent to exactly one ledf and a non-leaf vertexs # 2. Since
G has girth at least 5, the vertices, [1, u1, 2, s2, [, us are distinct and there does
not exist a vertexw in G with {uy, us, 2z} C N[w]. Hence the sefu;,us, 2z} is a
2-limited packing inGG, and we can extend it t8, a maximal 2-limited packing in
G. Butthe set B —{z})U{l,l2} is also a 2-limited packing it¥ with cardinality
|B| + 1. Hence there are maximal 2-limited packinggdrhaving different sizes,
and soG ¢ Us. O

Lemma 16. Supposes is a graph with girth at least 11, an€' € U4,. Then any
vertexv in G that is distance 2 from a stem is adjacent to exactly one stem.



Proof. Suppose’ is a graph with girth at least 11, add € U, ands is a stem
in G with an adjacent leal. Suppose vertex is distance 2 frons, and vertexz
is adjacent to botlk andv. By Lemma 13,z is not a stem and sois not a leaf,
so letC = {c1,ca,...,cn} be the (nonempty) set of neighborswbther thanz.
By Lemma 15,0 cannot be a stem, and so npis a leaf. For eacl; € C, let
D; = {di1,di2, ... ,d;, } be the (nonempty) set of neighborsefbther tharw.

To complete the proof, we must show that exactly one otjlsds a stem. By
Lemma 15, we know that at most one of thés is a stem, so by way of contra-
diction assume that none of thgs is a stem. We now build a maximal 2-limited
packing B. Start by placing vertices, z into B. To extendB we consider each
vertexc; and associated neighbaky of ¢; in turn.

If D; contains a stem, then without loss of generality, this sted | with leaf
ei1. In this case placé;; ande;; into B. Any other vertexi;; in D;, with j > 1 (if
it exists) has a neighbat;; other thare; sincec; is not a stem. Sincé;; is a stem
d;; is not a stem (by Lemma 13) and s@ has a neighboy;; other thard;;. Place
€ij andfij into B.

If D; does not contain a stem, then singés not a stem¢;; has a neighbot;;
other tharc;. Placed;; ande;; in B. Any vertexd;; € D; with 5 > 1 (if it exists)
has a neighboe;; other thanc; sincec; is not a stem. Sinc®); does not contain
stemsd;; is not a stem and s@; has a neighboy;; other thand;;. Placee;; and
fij into B.

For the resulting seB, there is no vertexv € G for which |[Nw] N B| > 2
because any such vertex would lie on a cycle of length at ntband the girth of
G is atleast 11. Thu® is a 2-limited packing, and we can exteBdo a maximal
2-limited packingB’ in G. The wayB is constructed ensures that each verigs
adjacent to exactly one vertex B. Therefore, the seB” = (B’ — {z}) U {l, v}
is also a 2-limited packing i, with cardinality| B’| + 1. HenceG has maximal
2-limited packings of different sizes, contradicting thetfthatG' € U», and hence
exactly one of the;’s is a stem.

]

Lemma 17. LetG be a connected graph i, with girth at least 11, and suppose
G has at least one stem. Then every vertex that is not a stenjaisesd to exactly
one stem.

Proof. In G, a vertex that is not a stem cannot be adjacent to two stemetoyria 15,
SO Suppos€- contains a vertex that is not a stem and that is not adjacent to a
stem. Among all stems & let s be one closest to, and consider a shortest path
v, U1, U, ..., U, s from v to s. If the path has length 2 then by Lemma 16 we
know v must be adjacent to a stem which is a contradiction. If thik pas length



three or more (s6 > 2) then Lemma 16 implies vertax_; is adjacent to a stem
s’, in contradiction tos being the closest stem to O

Theorem 18. Let G be a connected, uniformly 2-limited graph of girth at least
11. Suppos€si, s, ..., Sn} IS the set of stems i&, andm > 1. Then the set
{N]s;]|1 <i < m} is a partition of V(G), and if a stens; is adjacent to exactly
one leaf, then all non-leaf neighbors gfhave degree 2.

Proof. Suppose grapty satisfies the requirements of the theorem. Lemma 17 and
Lemma 13 imply that the sétV[s;]|1 < ¢ < m} is a partition of// (G), so the first
assertion follows.

Now suppose some stem, sy is adjacent to exactly one leaf, and further
has a non-leaf neighbgp of degree at least 3. Le®; be a set consisting of each
stems; and one leaf from those leaves adjacent to eacBecause the sef§|s;]
partitionV(G), the setB; is a 2-limited packing. In fact, the s&; is a maximal 2-
limited packing since it intersects each 8dfs;] in two vertices, so adding another
vertex to B; would cause some; to have|N[s;] N By| > 2. We now build a
second maximal 2-limited packing; as follows. Choose two non-stem neighbors
y; andy; of y; (elements ofV[s;| and N [s;], respectively,) and pyty;, si, y;,s;}
into B,. For each of any remaining non-leaf neighbersf s;, choose a non-
stem neighbor;, (an element ofV[s;]) and put{zx, sy} in B2. The setBs is a
2-limited packing forG because any vertexwith | N [v] N Bz| > 2 would lie on a
cycle of length at most 8, contradicting the fact that girftlizds 11 or more. So we
can extendB; to a maximal 2-limited packing iG. The only vertex fromV|s;]
that could be in the resulting maximal 2-limited packiBg is the leafl;. Since
this 2-limited packing in= contains at most 2 vertices from each oth\é;], we
have|By| < 2m. But B; contains exactly two vertices from eadf[s;|, and so
|B1| = 2m. Thus|Bs| < |B;], contradicting the fact tha¥ € Us.

O

In light of Lemma 11, the conditions of Theorem 18 are in faatessary and
sufficient conditions for a graph of girth at least 11 thatteors a stem to be
uniformly 2-limited. In particular, these conditions arecessary and sufficient for
a tree to be uniformly 2-limited.

In fact, it is possible to show that many graphs without stanesot uniformly
2-limited.

Lemma 19. If G has girth at least 14 and has minimum degree at least 2, then
G ¢ Us.



The proof is omitted; the basic idea is to tak&ain G, =, y, z, u, and extend
{y, z} to a maximal 2-limited packin@ in such a way thatB — {y}) U {z,u} is
also a 2-limited packing with cardinality3| + 1.

4  TreesT with Ly(T) = 2v(T)

By Lemma 6, all graph€r satisfy Lo(G) < 2v(G). In this section we give a
constructive characterization of those trees that attsi;nllound. First we note
that the graphs considered in the last section are releeaat h

Lemma 20. If 7" is a tree and!” is uniformly 2-limited, thero(7T") = 2+(T).

Proof. Let {s1, s2,...,sn} be the set of stems ifi. By Theorem 18 we know
{N[si]|1 <i < m} is a partition ofV(7T'), and every maximal 2-limited packing
Bin T contains exactly two vertices from each set in the partitsoi., (7)) = 2m.
The set of stems df are a dominating set @f, so(7") < m < Ly(7T")/2. Since
Lo(T) < 2v(T) by Lemma 6 we havés(T) = 2v(T). O

For brevity we name the trees of interest in this section.
Definition 21. Define
Lo ={T|Tis atree andLy(T') = 2v(T)}.

Lemma 20 says that every uniformly 2-limited tree isgn. However, the
tree shown in Figure 2 is i, but is not uniformly 2-limited. Hence the set

Figure 2: A treel” with Ly(T') = 2v(T') that is not uniformly 2-limited.

of uniformly 2-limited trees are a strict subset £§. Before giving an algorith-
mic description of the sef,, we state some necessary conditions for inclusion in
Lo. Although stated for trees, the following lemma holds foy @maphG with
Ly(G) = 27(G).

Lemma 22. LetT € L. Then both of the following hold:
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e T does not contain a stem that also haggattached.

e T does not contain a vertex that has thiégs attached.

Proof. Supposé’ contains a stem adjacent to a ledfand with aP;, a, b attached,
as shown in Figure 3. LeB be a maximum 2-limited packing ifi. By switching

|
ag a,
b
1 bZ
a b
G G

Figure 3: Subgraphs that can't occur in a tre&€in

some vertices i3 with others inV(G) — B if necessary, we may assume that
B contains the three verticdsa, b. Let D be a minimum dominating set fdr.
By switching some vertices i@ with others if necessary, we may assume ihat
contains the two stems a. But thenT has a minimum dominating sé? and a
maximum 2-limited packind? where vertexs € B has|N[a] N D| =2 > 1, and
therefore by Lemma 6 the graghcannot havé.o(T") = 2v(T'), and sol’ ¢ L.

Next supposé’ contains a vertex adjacent to threé’’s as illustrated in Fig-
ure 3. LetB be a maximum 2-limited packing iii. By switching some vertices
in B with others if necessary, we may assume tBatontains the five vertices
as,ai, by, by, co, and also that, ¢; ¢ B. Let D be a minimum dominating set for
T. By switching some vertices iy with others if necessary, we may assume that
D contains the three stemas, b1, c;. But then grapi” has a minimum dominat-
ing setD and a maximum 2-limited packing such that for vertex; € D we
have|N[c;) N B| = 1 < 2, and therefore by Lemma 6 the graphcannot have
LQ(T) = 2’)/(T), soT ¢ Lo.

]

Our aim is to show thafs is precisely the sat defined next.

Definition 23. LetC be the set of graphs consisting Bf together with any tree
that can be obtained from®, by any finite sequence of the following operations.

1. Add a new leaf to any stemalready in the graph. We refer to this as a
type-1 operation at.

2. Add a newPs to the graph, making a leaf of the nef% adjacent to any
vertexz already in the graph. We refer to this as a type-2 operation.at
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3. Add a newPs to the graph, making the central vertex of thg adjacent
to any vertexr already in the graph that is not in some maximum 2-limited
packing in the graph. We refer to this as a type-3 operation. at

4. Add a newP; to the graph, making the central vertex of the adjacent
to any vertexc already in the graph that is not in some maximum 2-limited
packing in the graph. We refer to this as a type-4 operation. at

Figure 4 illustrates the various operations.

%

®_..
%@_J*

¢

i

0101016

Figure 4: The effect of the operations definitig

Theorem 24. Each treeT" in C hasLy(T) = 2v(T). (In brief: C C L,.)

Proof. The pathP, € £,. Suppose that a tré€ € C isin Lo, S0Lo(T") = 2v(T).
We show a new tre@&” € C constructed fromi" using any of the four operations
definingC is in L5 also, and s&@ C L, will follow inductively. We consider the
four operations in turn.

Let s be a stem inl’; sinceT € Ly, we havels(T) = 2v(T"). Apply a
type-1 operation td@’ at s to obtain treel”. Becauses is a stem inT" we may
assume a minimum dominating set’Bfcontainss, and so dominate$”’, and so
v(T") < ~(T). A 2-limited packing inT is also a 2-limited packing ifi”’, so
Lo(T") > Lo(T) = 2v(T) > 2v(T"). But sincelo(T") < 2v(T") by Lemma 6
we havely(7") = 2v(T") and hencd” € Ls.
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Letz be any vertex ifl". Apply a type-2 operation t@' atx to obtain treel”. A
dominating set fofl” along with the new stem dominat@, soy(7") < ~(T) + 1.

A maximum 2-limited packing iff” along with the new leaf and stem is 2-limiting
for T, soLo(T") > Lo(T)+2. ThusLy(T") > Lo(T)+2 = 2y(T)+2 = 2(v(T)+

1) > 2+(T"). But sincelLo(T") < 2v(T") by Lemma 6 we havé(T") = 2v(T")
and hencd” € L,.

Let = be a vertex ofl’ that is not in some maximum 2-limited packitigyin
T. Apply a type-3 operation t@" at x to obtain treel” with new leaves,v. A
dominating set fofl” along with the new stem dominat@, so(7") < ~(T) + 1.
Sincex ¢ B, the setB U {u,v} is a 2-limited packing irl”. ThusLy(7") >
Lo(T) +2 = 29(T) +2 = 2(v(T) + 1) > 2y(T"). As above this implies
Lo(T") = 2+(T") and sol” € L,.

Finally, letz be a vertex off” that is not in some maximum 2-limited packing
Bin T, and apply a type-4 operation 0 at = to obtain treel”. A dominating
set forT', along with the two new stems will domina® so~(7") < ~(T) + 2.
Sincex ¢ B, the setB along with the new leaves and stems is 2-limitingTéy so
Lo(T") 2 Lo(T) + 4. ThuSLo(T") > Lo(T) + 4 = 24(T) + 4 = 2(y(T) +2) >
2v(T"), and agairl” € L, follows.

U

Theorem 25. If tree T" hasLy(7T') = 2(T'), thenT € C. (In brief: £ CC.)

Proof. We proceed inductively on the number of vertices. No treermvertex is
in Lo, and the only tree on two vertices iy is the pathP,, and this tree is i€
also. So inductively assume that for some positive integer 2, all treesT" in £,
with |V (T')] < n are contained i€. Let tree7” haven + 1 vertices and assume
T' € L5. We will showT” e C.

First supposd” has a stens adjacent to at least three leavgds, /3. Clearly
there is a minimum dominating sét of 7" not containing; and similarly there is
a maximum 2-limited packing3? in 7’ not containingl,. LetT = 7" — [,. Since
Iy ¢ D, D dominatesT’, and sincd; ¢ B, B is a 2-limited packing fofl’, and
soLo(T) > |B| = 2|D| > 2v(T) and hencel’ € Lo by Lemma 6. Sinc&’
hasn vertices by hypothesi& € C. As T’ can be obtained by applying a type-1
operation tdl" at s we havel” € C also.

Suppose tre€” onn + 1 vertices is inL, and has no stem adjacent to three
or more leaves. Lek be a longest path in tréE’. If 77 has diameter 2 it is a star
and is inC, so we can assume the length/ofs 3 or more, and that the sequence
of vertices in the path. is a,b,c,d, ... wherea is a leaf. AsL was a longest
path, and the distance betweemndc is 2, andT” has no stems with 3 or more
leaves attached, the component§6f- ¢ not containing vertex are either single
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vertices, orP,’s, Ps’'s. Furthermore in the last case it is the middle vertex infthe
that is adjacent to vertaxin 7”. This is illustrated in Figure 5.

Figure 5: Structure of” aroundec.

If some component df” — ¢ is a single vertex, thenis a stem in7”’, and so
by Lemma 22 the component @f — ¢ containing vertices, b is a P3, containing
exactly one further vertex. LetT = T’ — {a,b,z}. Sincec is a stem inT’,
v(T) < ~(T") — 1. Since we may assume some maximum 2-limited packng
T’ contains verticea andz, Lo(T) > Lo(T") — 2. ThusLy(T) > Ly(T") — 2 =
29(T") — 2 =2(y(T") — 1) > 2+(T) and soLy(T') = 2v(T') by Lemma 6. Thus
T is also inC by hypothesis. Further, this tells U$ — {a,z} is a maximum 2-
limiting set for T" that does not contain, so7” can be obtained by a applying a
type-3 operation td@" atc, and sol” € C also.

If no component ofl” — ¢ is a single vertex, then the componentsiéf— ¢
that do not contain vertexare P,’s and P;’s; Assume there are P;’'s andjg P’s,
soa + f > 1, and by Lemma 223 < 2. LetT be the tree obtained by removing
thesea P;’s, and theseéP’s, and the vertex from 7”. (In other wordsI" is the
component ofl” — ¢ containing the vertex.) Becausel” — ¢ has this structure
we can assum@’ has a minimum dominating sét such thatD — V (T') consists
precisely of every neighbor af (exceptd), of which there arex + 5 in number,
and not vertex,, and soy(T') < v(T") — (a + ). Similarly this structure ensures
T’ has a maximum 2-limiting se® containing exactly two vertices from each of
thesea + 8 components, and ¢ B. SoLy(T') > Lo(T’) — 2(a + B3). Thus, as
Lo(T") = 29(T"), we havely(T) > Lo(T") — 2(a + B) = 29(T") — 2(a + B) =
2(v(T") — (a+ B)) > 2v(T), and so as before Lemma 6 ensuitgél’) = 2v(T),
soT € C by hypothesis.

If we showT” can be obtained frori’ by an appropriate sequence of the op-
erations that defin€, then we havd” € C and our result will follow inductively.
For this we consider the possibilities f6r If 5 = 2 then B cannot containl, and
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S0 a type-4 operation t6 at d followed by « applications of a type-3 operation at
cgivesT’. If B = 1 atype-2 operation t@" at d, followed by« applications of a
type-3 operation at givesT”. If 3 = 0 thena > 1 so a type-2 operation, followed
by a type-1 operation, followed by — 1 type-3 operations will produce treg
from treeT. O

5 Summary

In this paper we introducg-limited packings in a graph. It is natural to question
whether the main result in section 3, the structural chareettion of graphs of
girth at least 11 that are uniformly two limited, in fact ajgglto graphs of some
lower girth as well. Similarly one wonders if a charactetiiza of the sort in section
4, for treesI” with Ly (T") = 2~(T'), exists for non-trees.

The first and third authors acknowledge support from NSERDitgr327473-
06 and 0004983, respectively.

References

[1] J. Arne Telle, Complexity of domination-type problems graphs, Nordic
Journal of Computing 1(1994), 157-171.

[2] John F. Fink and Michael S. Jacobson, @«omination,n-dependence and
forbidden subgraphs, Graph Theory and Its Applications lgoAthms and
Computer Science, John Wiley & Sons, Inc. (1985), 301-312.

[3] A. Meir and J.W. Moon, Relations between packing and cogenumbers of
a tree, Pacific Journal of Mathematics 61 (1975), 225-233.

15



