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Abstract

We define ak-limited packing in a graph, which generalizes a 2-packing
in a graph, and give several bounds on the size of ak-limited packing. One
such bound involves the domination number of the graph, and here we show
all trees attaining the bound can be built via a simple sequence of operations.
We consider graphs where every maximal 2-limited packing isa maximum
2-limited packing, and characterize their structure in a number of cases.

1 Introduction

Consider the following scenarios:
Network Security: A set of sensors are to be deployed to covertly monitor

a facility. Too many sensors close to any given location in the facility can be
detected. Where should the sensors be placed so that the total number of sensors
deployed is maximized?

NIMBY: A city requires a large number of obnoxious facilities (such as garbage
dumps), but no neighborhood should be close to too many such facilities, nor
should the facilities themselves be too close together. Where should the facilities
be located?

Market Saturation: A fast food franchise is moving into a newcity. Market
analysis shows that each outlet draws customers from both its immediate city block
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and from nearby city blocks. However it is also known that a given city block
cannot support too many outlets nearby. Where should the outlets be placed?

A graph model of these scenarios might maximize the size of a vertex subset
subject to the constraint that no vertex in the graph is near too many of the selected
vertices. The well-known packing number of a graph is the maximum size of a
set of verticesB such that for any vertexv the closed neighborhood ofv, N [v],
satisfies|N [v] ∩ B| ≤ 1. In this paper we consider relaxing the constraint to
|N [v] ∩B| ≤ k, for some fixed integerk.

Our notation is standard. Specifically, given a graphG thenV (G) is the set of
vertices ofG, γ(G) is the domination number ofG, ρ(G) is the 2-packing number,
δ(G) is the minimum degree of a vertex inG, ∆(G) is the maximum degree of
a vertex inG, and for a vertexv ∈ V (G), N [v] is the closed neighborhood ofv,
which is the set of vertices adjacent tov along withv itself. The girth of a graph is
the length of the shortest cycle in the graph, which is said tobe infinite if the graph
is a forest. A vertex of degree one is a leaf, and a stem is a vertex that is adjacent
to at least one leaf. The symbolPt denotes the path witht vertices, and if a vertex
v in a tree is adjacent to a stem of degree 2, we will sayv has aP2 attached.

Definition 1. Let G be a graph, and letk ∈ N. A set of verticesB ⊆ V (G) is
called ak-limited packing inG provided that for allv ∈ V (G), we have|N [v] ∩
B| ≤ k.

In [1], the author introduces a notation unifying the description of many graph
theoretic parameters. Specifically, in the context of a given graphG, a setB ⊆
V (G) is called a[ρ≤k, σ≤k−1]-set provided any vertexv in G has|N [v] ∩B| ≤ k,
which is what we are calling ak-limited packing. Similarly a2-limited packing in
a graph would be called a[ρ≤2, σ≤1]-set.

A k-limited packingB in a graphG is calledmaximalif there does not exist
a k-limited packingB′ in G such thatB ( B′. A k-limited packingB in a graph
G is calledmaximumif there does not exist ak-limited packingB′ in G such that
|B| < |B′|.

For example, on the pathP5 as indicated in Figure 1, the sets{1, 3, 5} and

1 2 3 54

Figure 1: The pathP5

{1, 2, 4, 5} are 2-limited packings inP5. Both sets are maximal 2-limited pack-
ings inP5, and the set{1, 2, 4, 5} is a maximum 2-limited packing inP5. We are
interested in the maximum size of ak-limited packing in an arbitrary graph.
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Definition 2. LetG be a graph, and letk ∈ N. Thek-limited packing number of
G, denotedLk(G), is defined by

Lk(G) = max{|B|| B is ak-limited packing inG }.

If a subset of verticesB is a 2-packing then the distance between any pair of
distinct vertices inB is at least 3, in which case|N [v] ∩ B| ≤ 1 for any vertex
v in the graph, soB is also a1-limited packing. But a1-limited packingB has
|N [v] ∩ B| ≤ 1 for any vertexv, and so the distance between any pair of distinct
vertices inB is at least 3. Thus1-limited packings and (distance) 2-packings are
the same, and soL1(G) = ρ(G).

Since ak-limited packing is also a(k + 1)-limited packing we immediately
obtain the following inequalities:

ρ(G) = L1(G) ≤ L2(G) ≤ . . . ≤ L∆(G)+1(G) = |V (G)|.

We collect some easily verified facts about thek-limited packing numbers of
some familiar graphs in the following lemma.

Lemma 3. Letm,k, n ∈ N with m ≥ 3. Then,

• L1(Pm) = ⌈m3 ⌉,

• L2(Pm) = ⌈2m3 ⌉

• L1(Cm) = ⌊m3 ⌋

• L2(Cm) = ⌊2m3 ⌋

• Lk(Km) = min{k,m}

• Lk(Km,n) =

{

1 if k = 1,

min{k − 1,m}+min{k − 1, n} if k > 1.

2 Bounds onk-limited packings

In this section we bound thek-limited packing number of a graphG. First we
observe some connections to domination numbers ofG.

For a positive integerk ≤ δ(G) + 1, a subsetD of V (G) is called ak-tuple
dominating set inG if |N [v] ∩D| ≥ k for every vertexv ∈ V (G). The minimum
cardinality of ak-tuple dominating set inG is denoted byγ×k(G). The familiar
domination number is thusγ(G) = γ×1(G).

3



Lemma 4. LetG be a graph with maximum degree∆ and minimum degreeδ, and
let {B,R} be a partition ofV (G). Then:

1. If k ≤ δ−1 andB is a(δ−k)-limited packing inG, thenR is a(k+1)-tuple
dominating set inG.

2. If k ≤ ∆ − 1 andR is a (k + 1)-tuple dominating set inG, thenB is a
(∆− k)-limited packing inG.

Proof. Let B be a(δ − k)-limited packing inG. Then for any vertexv in G
we have|N [v] ∩ B| ≤ δ − k. Since|N [v]| ≥ δ + 1, we have|N [v] ∩ R| ≥
(δ + 1) − |N [v] ∩ B| ≥ (δ + 1) − (δ − k) = k + 1. ThusR is a (k + 1)-tuple
dominating set inG.

This establishes (1). The proof of (2) is similar and is omitted.

When the graph is regular even more can be said.

Lemma 5. If G is anr-regular graph, andk ≤ r − 1, then

Lr−k(G) + γ×(k+1)(G) = |V (G)|.

Proof. Lemma 4 implies ifB is a maximum(δ − k)-limited packing inG, then
R = V (G) − B is a(k + 1)-tuple dominating set inG, and soLδ−k(G) = |B| =
|V (G)| − |R| ≤ |V (G)| − γ×(k+1)(G). Also, if R is a minimum(k + 1)-tuple
dominating set inG, thenB is a(∆−k)-limited packing inG, and soL∆−k(G) ≥
|B| = |V (G)| − |R| = |V (G)| − γ×(k+1)(G). WhenG is r-regular,r = δ = ∆,
which impliesLr−k(G) = |V (G)|−γ×(k+1)(G), from which the theorem assertion
follows.

The following bound also involves the domination number, and arises naturally
when considering linear programs associated withk-limited packings.

Lemma 6. If G is a graph, thenLk(G) ≤ kγ(G). Furthermore, equality holds if
and only if for any maximum k-limited packingB in G and any minimum dominat-
ing setD in G both the following hold:

1. For anyb ∈ B we have|N [b] ∩D| = 1.

2. For anyd ∈ D we have|N [d] ∩B| = k.

Proof. LetB be any maximumk-limited packing inG, and letD be any minimum
dominating set inG. Let U = {(b, d)|b ∈ B, d ∈ D, andb ∈ N [d]}. For every
b ∈ B, there is at least oned ∈ D such thatb ∈ N [d] sinceD is a dominating set
for G, and hence|B| ≤ |U |. For eachd ∈ D, we know|N [d]∩B| ≤ k, sinceB is
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ak-limited packing, and hence there are at mostk verticesb ∈ B with (b, d) ∈ U ,
and so|U | ≤ k|D|. ThusLk(G) = |B| ≤ |U | ≤ k|D| = kγ(G).

From these inequalities we seeLk(G) = kγ(G) holds if and only if|N [b] ∩
D| = 1 for eachb ∈ B, and|N [d] ∩B| = k for eachd ∈ D. AsB is an arbitrary
maximumk-limited packing inG, andD is an arbitrary minimum size dominating
set inG, the result follows.

One can bound the size of ak-limited packing solely in terms of the number of
vertices inG.

Lemma 7. If G is a connected graph with|V (G)| ≥ 3, thenL2(G) ≤ 4
5 |V (G)|.

Proof. Let B be a maximum 2-limited packing inG. We count the number,e, of
edges with an endpoint in bothB andV (G) −B.

SinceB is a 2-limited packing, the induced subgraphG[B] has maximum de-
gree 1, and hence the components ofG[B] are either isolated vertices orP2’s. Since
G is connected, and|V (G)| ≥ 3, each component inG[B] has an edge (inG) to
some vertex inV (G)−B, and soe is at least as large as the number of components
in G[B], and so|B|/2 ≤ e. SinceB is a 2-limited packing each vertex inV (G)−B
has at most two neighbors inB. Hencee ≤ 2(|V (G)| − |B|). Together these in-
equalities imply|B|/2 ≤ 2(|V (G)| − |B|), which implies|B| ≤ 4

5 |V (G)|.

The upper bound|B| = 4
5 |V (G)| is achieved only if both inequalities in the

proof hold with equality. This means every vertex inV (G) − B has twoP2’s
attached, and all the vertices in theseP2’s are inB. Given any graphH we can
attach twoP2’s to every vertex in the graph to obtain a new graph containing H
where this bound is met; in particular the newly added vertices are a 2-limited
packing inG.

If we impose constraints on the minimum degreeδ(G) of G, then similar rea-
soning gives the following.

Lemma 8. If G is a connected graph, andδ(G) ≥ k, thenLk(G) ≤ k
k+1 |V (G)|.

This bound can always be achieved; letH be any connected graph, and to each
vertexv in H attach a newKk by makingv adjacent to each vertex in theKk. The
resulting graphG hasLk(G) = k|V (H)| = k

k+1 |V (G)|. Whenk = 2 the cycles
C3m are another family of graphs which achieve this bound.

When the graph is regular stronger bounds are possible. The following is rep-
resentative.

Lemma 9. LetG be a cubic graph. Then14 |V (G)| ≤ L2(G) ≤ 1
2 |V (G)|.
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3 Uniformly 2-limited graphs

A greedy algorithm will quickly find a maximalk-limited packing in a graph, but
that set will not usually be a maximumk-limited packing. In this section we con-
sider graphsG where every maximal2-limited packing inG is a maximum2-
limited packing. This is the same as saying that every maximal 2-limited packing
in G has the same cardinality.

Definition 10. A graphG is said to be uniformly2-limited if every maximal2-
limited packing inG has the same cardinality.

For exampleP3 is uniformly 2-limited, butP4 andP5 are not. The following
gives a sufficient condition for a graphG to be uniformly 2-limited.

Lemma 11. LetG be a graph, and let{s1, s2, . . . , sm} be the set of stems inG.
Suppose{N [si]|1 ≤ i ≤ m} is a partition ofV (G), and if a stemsi is adjacent
to exactly one leaf, then all non-leaf neighbors ofsi have degree 2. ThenG is
uniformly 2-limited.

Proof. Let B be a maximal 2-limited packing inG, and so|N [si] ∩ B| ≤ 2 for
each stemsi. We will first show |N [si] ∩ B| = 2 for eachsi. On the contrary
suppose some stemsi has|N [si] ∩B| < 2.

One possibility is that the stemsi is adjacent to at least two leaves. Since
|B ∩N [si]| < 2, one of the leaves, sayli, is not inB. But thenB ∪ {li} is also a
2-limited packing, contradicting the maximality ofB.

The other possibility is that the stemsi is adjacent to exactly one leafli. If
li /∈ B thenB ∪{li} is a 2-limited packing, contradicting the maximality ofB. So
we must haveli ∈ B, and alsosi /∈ B since|N [si]∩B| < 2. The setB′ = B∪{si}
is also a 2-limited packing inG; in particular any non-leaf neighborv of si must
satisfy |N [v] ∩ B′| ≤ 2 sincev has degree 2 andv /∈ B′. So again we have
contradicted the maximality ofB.

Thus each stemsi has|N [si] ∩B| = 2, and as the set{N [si]|1 ≤ i ≤ m} is a
partition ofV (G), |B| =

∑

1≤i≤m|N [si] ∩ B| = 2m. But asB was an arbitrary
maximal 2-limited packing inG, every maximal 2-limited packing inG has the
same size2m.

The main result of this section is that the conditions of Lemma 11 are also
necessary when a uniformly 2-limited graphG contains leaves and has girth at
least 11. We will use the following notational convenience.

Definition 12. Denote byU2 the set of uniformly 2-limited graphs;

U2 = {G| G is uniformly 2-limited graph}.
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We first prove a series of conditions necessary for inclusionin U2.

Lemma 13. If the graphG contains two adjacent stems, thenG /∈ U2.

Proof. SupposeG contains adjacent stemss1 ands2, with adjacent leavesl1, l2
respectively. Extend{s1, s2} to B, a maximal 2-limited packing inG. Since
{s1, s2} ⊆ B, ands1 and s2 are adjacent, andB is a 2-limited packing inG,
l1 and l2 are not inB. The setB′ = (B − {s2}) ∪ {l1, l2} is also a 2-limited
packing inG, and|B′| = |B| + 1. Thus there are maximal 2-limited packings in
G of different sizes, soG /∈ U2.

Lemma 14. If G has two stemss1, s2 such thats1 ands2 are distance 2 apart, and
eithers1 is adjacent to at least two leaves ors1 has degree 2, thenG /∈ U2.

Proof. Firstly suppose stemss1, s2 are distance 2 apart, each being adjacent to a
vertexz, ands2 is adjacent to leafl2 ands1 is adjacent to two leavesl1, l′1. Extend
{s2, z, l1} to B, a maximal 2-limited packing inG. BecauseB is a 2-limited
packing inG already containing{s2, z, l1}, it cannot also containl2 or l′1. Then
B′ = (B − {z}) ∪ {l2, l

′
1} is a 2-limited packing inG, and|B′| = |B|+ 1. Thus

there are maximal 2-limited packings inG of different sizes, soG /∈ U2.
Next suppose stemss1, s2 are distance 2 apart, each being adjacent to a vertex

z, ands1 has degree 2, ands1 is adjacent to leafl1, ands2 is adjacent to leafl2.
In this case extend{s2, z, l1} toB, a maximal 2-limited packing inG. In this case
B′ = (B−{z})∪{s1, l2} is also a 2-limited packing inG, and|B′| = |B|+1. Thus
there are maximal 2-limited packings inG of different sizes, and soG /∈ U2.

Lemma 15. If G is a graph with girth at least 5, with two stems at distance two
apart, thenG /∈ U2.

Proof. LetG be a graph with girth at least 5, and lets1, s2 be stems ofG at distance
two apart, with a common neighborz. In light of Lemma 14, we may assumes1
is adjacent to exactly one leafl1 and at least one non-leaf vertexu1 6= z, and
similarly s2 is adjacent to exactly one leafl2 and a non-leaf vertexu2 6= z. Since
G has girth at least 5, the verticess1, l1, u1, z, s2, l2, u2 are distinct and there does
not exist a vertexw in G with {u1, u2, z} ⊆ N [w]. Hence the set{u1, u2, z} is a
2-limited packing inG, and we can extend it toB, a maximal 2-limited packing in
G. But the set(B−{z})∪{l1, l2} is also a 2-limited packing inG with cardinality
|B| + 1. Hence there are maximal 2-limited packings inG having different sizes,
and soG /∈ U2.

Lemma 16. SupposeG is a graph with girth at least 11, andG ∈ U2. Then any
vertexv in G that is distance 2 from a stem is adjacent to exactly one stem.
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Proof. SupposeG is a graph with girth at least 11, andG ∈ U2, ands is a stem
in G with an adjacent leafl. Suppose vertexv is distance 2 froms, and vertexz
is adjacent to boths andv. By Lemma 13,z is not a stem and sov is not a leaf,
so letC = {c1, c2, . . . , cm} be the (nonempty) set of neighbors ofv other thanz.
By Lemma 15,v cannot be a stem, and so noci is a leaf. For eachci ∈ C, let
Di = {di1, di2, . . . , diki} be the (nonempty) set of neighbors ofci other thanv.

To complete the proof, we must show that exactly one of theci’s is a stem. By
Lemma 15, we know that at most one of theci’s is a stem, so by way of contra-
diction assume that none of theci’s is a stem. We now build a maximal 2-limited
packingB. Start by placing verticess, z into B. To extendB we consider each
vertexci and associated neighborsDi of ci in turn.

If Di contains a stem, then without loss of generality, this stem isdi1, with leaf
ei1. In this case placedi1 andei1 intoB. Any other vertexdij in Di, with j > 1 (if
it exists) has a neighboreij other thanci sinceci is not a stem. Sincedi1 is a stem
dij is not a stem (by Lemma 13) and soeij has a neighborfij other thandij . Place
eij andfij into B.

If Di does not contain a stem, then sinceci is not a stem,di1 has a neighborei1
other thanci. Placedi1 andei1 in B. Any vertexdij ∈ Di with j > 1 (if it exists)
has a neighboreij other thanci sinceci is not a stem. SinceDi does not contain
stemsdij is not a stem and soeij has a neighborfij other thandij . Placeeij and
fij into B.

For the resulting setB, there is no vertexw ∈ G for which |N [w] ∩ B| > 2
because any such vertex would lie on a cycle of length at most 10 and the girth of
G is at least 11. ThusB is a 2-limited packing, and we can extendB to a maximal
2-limited packingB′ in G. The wayB is constructed ensures that each vertexci is
adjacent to exactly one vertex inB′. Therefore, the setB′′ = (B′ − {z}) ∪ {l, v}
is also a 2-limited packing inG, with cardinality|B′| + 1. HenceG has maximal
2-limited packings of different sizes, contradicting the fact thatG ∈ U2, and hence
exactly one of theci’s is a stem.

Lemma 17. LetG be a connected graph inU2 with girth at least 11, and suppose
G has at least one stem. Then every vertex that is not a stem is adjacent to exactly
one stem.

Proof. InG, a vertex that is not a stem cannot be adjacent to two stems by Lemma 15,
so supposeG contains a vertexv that is not a stem and that is not adjacent to a
stem. Among all stems inG let s be one closest tov, and consider a shortest path
v, u1, u2, . . . , ut, s from v to s. If the path has length 2 then by Lemma 16 we
know v must be adjacent to a stem which is a contradiction. If this path has length
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three or more (sot ≥ 2) then Lemma 16 implies vertexut−1 is adjacent to a stem
s′, in contradiction tos being the closest stem tov.

Theorem 18. Let G be a connected, uniformly 2-limited graph of girth at least
11. Suppose{s1, s2, . . . , sm} is the set of stems inG, andm ≥ 1. Then the set
{N [si]|1 ≤ i ≤ m} is a partition ofV (G), and if a stemsi is adjacent to exactly
one leaf, then all non-leaf neighbors ofsi have degree 2.

Proof. Suppose graphG satisfies the requirements of the theorem. Lemma 17 and
Lemma 13 imply that the set{N [si]|1 ≤ i ≤ m} is a partition ofV (G), so the first
assertion follows.

Now suppose some stem, says1, is adjacent to exactly one leafl1, and further
has a non-leaf neighbory1 of degree at least 3. LetB1 be a set consisting of each
stemsi and one leaf from those leaves adjacent to eachsi. Because the setsN [si]
partitionV (G), the setB1 is a 2-limited packing. In fact, the setB1 is a maximal 2-
limited packing since it intersects each setN [si] in two vertices, so adding another
vertex toB1 would cause somesi to have|N [si] ∩ B1| > 2. We now build a
second maximal 2-limited packingB2 as follows. Choose two non-stem neighbors
yi andyj of y1 (elements ofN [si] andN [sj], respectively,) and put{yi, si, yj, sj}
into B2. For each of any remaining non-leaf neighborsz of s1, choose a non-
stem neighborzk (an element ofN [sk]) and put{zk, sk} in B2. The setB2 is a
2-limited packing forG because any vertexv with |N [v] ∩B2| > 2 would lie on a
cycle of length at most 8, contradicting the fact that girth of G is 11 or more. So we
can extendB2 to a maximal 2-limited packing inG. The only vertex fromN [s1]
that could be in the resulting maximal 2-limited packingB2 is the leafl1. Since
this 2-limited packing inG contains at most 2 vertices from each otherN [si], we
have|B2| < 2m. But B1 contains exactly two vertices from eachN [si], and so
|B1| = 2m. Thus|B2| < |B1|, contradicting the fact thatG ∈ U2.

In light of Lemma 11, the conditions of Theorem 18 are in fact necessary and
sufficient conditions for a graph of girth at least 11 that contains a stem to be
uniformly 2-limited. In particular, these conditions are necessary and sufficient for
a tree to be uniformly 2-limited.

In fact, it is possible to show that many graphs without stemsare not uniformly
2-limited.

Lemma 19. If G has girth at least 14 and has minimum degree at least 2, then
G /∈ U2.
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The proof is omitted; the basic idea is to take aP4 in G, x, y, z, u, and extend
{y, z} to a maximal 2-limited packingB in such a way that(B − {y}) ∪ {x, u} is
also a 2-limited packing with cardinality|B|+ 1.

4 TreesT with L2(T ) = 2γ(T )

By Lemma 6, all graphsG satisfyL2(G) ≤ 2γ(G). In this section we give a
constructive characterization of those trees that attain this bound. First we note
that the graphs considered in the last section are relevant here.

Lemma 20. If T is a tree andT is uniformly 2-limited, thenL2(T ) = 2γ(T ).

Proof. Let {s1, s2, . . . , sm} be the set of stems inT . By Theorem 18 we know
{N [si]|1 ≤ i ≤ m} is a partition ofV (T ), and every maximal 2-limited packing
B in T contains exactly two vertices from each set in the partition, soL2(T ) = 2m.
The set of stems ofT are a dominating set ofT , soγ(T ) ≤ m ≤ L2(T )/2. Since
L2(T ) ≤ 2γ(T ) by Lemma 6 we haveL2(T ) = 2γ(T ).

For brevity we name the trees of interest in this section.

Definition 21. Define

L2 = {T |T is a tree andL2(T ) = 2γ(T )}.

Lemma 20 says that every uniformly 2-limited tree is inL2. However, the
tree shown in Figure 2 is inL2 but is not uniformly 2-limited. Hence the set

Figure 2: A treeT with L2(T ) = 2γ(T ) that is not uniformly 2-limited.

of uniformly 2-limited trees are a strict subset ofL2. Before giving an algorith-
mic description of the setL2, we state some necessary conditions for inclusion in
L2. Although stated for trees, the following lemma holds for any graphG with
L2(G) = 2γ(G).

Lemma 22. LetT ∈ L2. Then both of the following hold:
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• T does not contain a stem that also has aP2 attached.

• T does not contain a vertex that has threeP2’s attached.

Proof. SupposeT contains a stems adjacent to a leafl and with aP2 a, b attached,
as shown in Figure 3. LetB be a maximum 2-limited packing inT . By switching

s

l

a b
v

a

b b

c c

a1

1

1

2

2

2

Figure 3: Subgraphs that can’t occur in a tree inL2.

some vertices inB with others inV (G) − B if necessary, we may assume that
B contains the three verticesl, a, b. Let D be a minimum dominating set forT .
By switching some vertices inD with others if necessary, we may assume thatD
contains the two stemss, a. But thenT has a minimum dominating setD and a
maximum 2-limited packingB where vertexa ∈ B has|N [a] ∩D| = 2 > 1, and
therefore by Lemma 6 the graphT cannot haveL2(T ) = 2γ(T ), and soT /∈ L2.

Next supposeT contains a vertexv adjacent to threeP2’s as illustrated in Fig-
ure 3. LetB be a maximum 2-limited packing inT . By switching some vertices
in B with others if necessary, we may assume thatB contains the five vertices
a2, a1, b2, b1, c2, and also thatv, c1 /∈ B. LetD be a minimum dominating set for
T . By switching some vertices inD with others if necessary, we may assume that
D contains the three stemsa1, b1, c1. But then graphT has a minimum dominat-
ing setD and a maximum 2-limited packingB such that for vertexc1 ∈ D we
have|N [c1] ∩ B| = 1 < 2, and therefore by Lemma 6 the graphT cannot have
L2(T ) = 2γ(T ), soT /∈ L2.

Our aim is to show thatL2 is precisely the setC defined next.

Definition 23. Let C be the set of graphs consisting ofP2 together with any tree
that can be obtained fromP2 by any finite sequence of the following operations.

1. Add a new leaf to any stems already in the graph. We refer to this as a
type-1 operation ats.

2. Add a newP3 to the graph, making a leaf of the newP3 adjacent to any
vertexx already in the graph. We refer to this as a type-2 operation atx.
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3. Add a newP3 to the graph, making the central vertex of theP3 adjacent
to any vertexx already in the graph that is not in some maximum 2-limited
packing in the graph. We refer to this as a type-3 operation atx.

4. Add a newP5 to the graph, making the central vertex of theP5 adjacent
to any vertexx already in the graph that is not in some maximum 2-limited
packing in the graph. We refer to this as a type-4 operation atx.

Figure 4 illustrates the various operations.

s

x

x

xx

x

x

s l

Figure 4: The effect of the operations definingC.

Theorem 24. Each treeT in C hasL2(T ) = 2γ(T ). (In brief: C ⊆ L2.)

Proof. The pathP2 ∈ L2. Suppose that a treeT ∈ C is in L2, soL2(T ) = 2γ(T ).
We show a new treeT ′ ∈ C constructed fromT using any of the four operations
definingC is in L2 also, and soC ⊆ L2 will follow inductively. We consider the
four operations in turn.

Let s be a stem inT ; sinceT ∈ L2, we haveL2(T ) = 2γ(T ). Apply a
type-1 operation toT at s to obtain treeT ′. Becauses is a stem inT we may
assume a minimum dominating set ofT containss, and so dominatesT ′, and so
γ(T ′) ≤ γ(T ). A 2-limited packing inT is also a 2-limited packing inT ′, so
L2(T

′) ≥ L2(T ) = 2γ(T ) ≥ 2γ(T ′). But sinceL2(T
′) ≤ 2γ(T ′) by Lemma 6

we haveL2(T
′) = 2γ(T ′) and henceT ′ ∈ L2.
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Letx be any vertex inT . Apply a type-2 operation toT atx to obtain treeT ′. A
dominating set forT along with the new stem dominatesT ′, soγ(T ′) ≤ γ(T )+1.
A maximum 2-limited packing inT along with the new leaf and stem is 2-limiting
for T ′, soL2(T

′) ≥ L2(T )+2. ThusL2(T
′) ≥ L2(T )+2 = 2γ(T )+2 = 2(γ(T )+

1) ≥ 2γ(T ′). But sinceL2(T
′) ≤ 2γ(T ′) by Lemma 6 we haveL2(T

′) = 2γ(T ′)
and henceT ′ ∈ L2.

Let x be a vertex ofT that is not in some maximum 2-limited packingB in
T . Apply a type-3 operation toT at x to obtain treeT ′ with new leavesu, v. A
dominating set forT along with the new stem dominatesT ′, soγ(T ′) ≤ γ(T )+1.
Sincex /∈ B, the setB ∪ {u, v} is a 2-limited packing inT ′. ThusL2(T

′) ≥
L2(T ) + 2 = 2γ(T ) + 2 = 2(γ(T ) + 1) ≥ 2γ(T ′). As above this implies
L2(T

′) = 2γ(T ′) and soT ′ ∈ L2.
Finally, letx be a vertex ofT that is not in some maximum 2-limited packing

B in T , and apply a type-4 operation toT at x to obtain treeT ′. A dominating
set forT , along with the two new stems will dominateT ′ soγ(T ′) ≤ γ(T ) + 2.
Sincex /∈ B, the setB along with the new leaves and stems is 2-limiting forT ′, so
L2(T

′) ≥ L2(T ) + 4. ThusL2(T
′) ≥ L2(T ) + 4 = 2γ(T ) + 4 = 2(γ(T ) + 2) ≥

2γ(T ′), and againT ′ ∈ L2 follows.

Theorem 25. If treeT hasL2(T ) = 2γ(T ), thenT ∈ C. (In brief: L2 ⊆ C.)

Proof. We proceed inductively on the number of vertices. No tree on one vertex is
in L2, and the only tree on two vertices inL2 is the pathP2, and this tree is inC
also. So inductively assume that for some positive integern ≥ 2, all treesT in L2

with |V (T )| ≤ n are contained inC. Let treeT ′ haven + 1 vertices and assume
T ′ ∈ L2. We will showT ′ ∈ C.

First supposeT ′ has a stems adjacent to at least three leavesl1, l2, l3. Clearly
there is a minimum dominating setD of T ′ not containingl1 and similarly there is
a maximum 2-limited packingB in T ′ not containingl1. Let T = T ′ − l1. Since
l1 /∈ D, D dominatesT , and sincel1 /∈ B, B is a 2-limited packing forT , and
so L2(T ) ≥ |B| = 2|D| ≥ 2γ(T ) and henceT ∈ L2 by Lemma 6. SinceT
hasn vertices by hypothesisT ∈ C. As T ′ can be obtained by applying a type-1
operation toT at s we haveT ′ ∈ C also.

Suppose treeT ′ on n + 1 vertices is inL2 and has no stem adjacent to three
or more leaves. LetL be a longest path in treeT ′. If T ′ has diameter 2 it is a star
and is inC, so we can assume the length ofL is 3 or more, and that the sequence
of vertices in the pathL is a, b, c, d, . . . wherea is a leaf. AsL was a longest
path, and the distance betweena andc is 2, andT ′ has no stems with 3 or more
leaves attached, the components ofT ′ − c not containing vertexd are either single
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vertices, orP2’s, P3’s. Furthermore in the last case it is the middle vertex in theP3

that is adjacent to vertexc in T ′. This is illustrated in Figure 5.

d
c

Figure 5: Structure ofT ′ aroundc.

If some component ofT ′ − c is a single vertex, thenc is a stem inT ′, and so
by Lemma 22 the component ofT ′ − c containing verticesa, b is aP3, containing
exactly one further vertexx. Let T = T ′ − {a, b, x}. Sincec is a stem inT ′,
γ(T ) ≤ γ(T ′)− 1. Since we may assume some maximum 2-limited packingB in
T ′ contains verticesa andx, L2(T ) ≥ L2(T

′) − 2. ThusL2(T ) ≥ L2(T
′) − 2 =

2γ(T ′) − 2 = 2(γ(T ′)− 1) ≥ 2γ(T ) and soL2(T ) = 2γ(T ) by Lemma 6. Thus
T is also inC by hypothesis. Further, this tells usB − {a, x} is a maximum 2-
limiting set forT that does not containc, soT ′ can be obtained by a applying a
type-3 operation toT at c, and soT ′ ∈ C also.

If no component ofT ′ − c is a single vertex, then the components ofT ′ − c
that do not contain vertexd areP2’s andP3’s; Assume there areα P3’s andβ P2’s,
soα + β ≥ 1, and by Lemma 22,β ≤ 2. Let T be the tree obtained by removing
theseαP3’s, and theseβP2’s, and the vertexc from T ′. (In other words,T is the
component ofT ′ − c containing the vertexd.) BecauseT ′ − c has this structure
we can assumeT ′ has a minimum dominating setD such thatD − V (T ) consists
precisely of every neighbor ofc (exceptd), of which there areα + β in number,
and not vertexc, and soγ(T ) ≤ γ(T ′)− (α+ β). Similarly this structure ensures
T ′ has a maximum 2-limiting setB containing exactly two vertices from each of
theseα + β components, andc /∈ B. SoL2(T ) ≥ L2(T

′) − 2(α + β). Thus, as
L2(T

′) = 2γ(T ′), we haveL2(T ) ≥ L2(T
′)− 2(α+ β) = 2γ(T ′)− 2(α+ β) =

2(γ(T ′)− (α+β)) ≥ 2γ(T ), and so as before Lemma 6 ensuresL2(T ) = 2γ(T ),
soT ∈ C by hypothesis.

If we showT ′ can be obtained fromT by an appropriate sequence of the op-
erations that defineC, then we haveT ′ ∈ C and our result will follow inductively.
For this we consider the possibilities forβ. If β = 2 thenB cannot containd, and
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so a type-4 operation toT at d followed byα applications of a type-3 operation at
c givesT ′. If β = 1 a type-2 operation toT at d, followed byα applications of a
type-3 operation atc givesT ′. If β = 0 thenα ≥ 1 so a type-2 operation, followed
by a type-1 operation, followed byα − 1 type-3 operations will produce treeT ′

from treeT .

5 Summary

In this paper we introducek-limited packings in a graph. It is natural to question
whether the main result in section 3, the structural characterization of graphs of
girth at least 11 that are uniformly two limited, in fact applies to graphs of some
lower girth as well. Similarly one wonders if a characterization of the sort in section
4, for treesT with L2(T ) = 2γ(T ), exists for non-trees.

The first and third authors acknowledge support from NSERC grants 327473-
06 and 0004983, respectively.
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