# Identifying codes of the direct product of two cliques 

Douglas F. Rall*<br>Furman University<br>Greenville, SC, USA<br>doug.rall@furman.edu

Kirsti Wash<br>Clemson University<br>Clemson, SC, USA<br>kirstiw@g.clemson.edu

July 5, 2013


#### Abstract

An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code in a graph $G$ is denoted $\gamma^{\mathrm{ID}}(G)$. It was recently shown by Gravier, Moncel and Semri that $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{n}\right)=\left\lfloor\frac{3 n}{2}\right\rfloor$. Letting $n, m \geq 2$ be any integers, we consider identifying codes of the direct product $K_{n} \times K_{m}$. In particular, we answer a question of Klavžar and show the exact value of $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$.


Keywords: Identifying code; Direct product

AMS subject classification (2010): 05C69, 05C76, 94B60

## 1 Introduction

An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex has a distinct intersection with the set. Because of this characteristic of the dominating set every vertex can be uniquely located by using this intersection with the identifying code. The first to study identifying codes were Karpovsky, Chakrabarty and Levitin [16] who used them to analyze fault-detection problems in multiprocessor systems. An excellent, detailed list of references on identifying codes can be found on Antoine Lobstein's webpage [19]. The usual invariant of interest is the minimum cardinality of an identifying code in a given graph.

[^0]In this regard various families of graphs have been studied, including trees [3], paths [2, 5, 15], cycles $[2,10,21,5,15]$, and infinite grids $[1,6,12]$.

In terms of graph products, a few of the more recent results have been in the study of hypercubes $[4,13,14,17,20]$, the Cartesian product of cliques $[9,8]$, and the lexicographic product of two graphs [7]. A natural problem (posed by Klavžar [18] at the Bordeaux Workshop on Identifying Codes in 2011) is to determine the order of a minimum identifying code in the direct product of two complete graphs. In this paper we completely solve this problem.

The remainder of the paper is organized as follows. We first give some useful definitions and terminology. In Section 2 we state the main results which give the cardinality of a minimum identifying code for the direct product of any two nontrivial cliques. Section 3 is devoted to deriving some important properties that will be useful in showing that a set of vertices is an ID code in a direct product of two cliques. The proofs of the main results are given in Section 4.

### 1.1 Definitions and Notation

Given a simple undirected graph $G$ and a vertex $x$ of $G$, we let $N(x)$ denote the open neighborhood of $x$, that is, the set of vertices adjacent to $x$. The closed neighborhood of $x$ is $N[x]=N(x) \cup\{x\}$. By a code in $G$ we mean any nonempty subset of vertices in $G$. The vertices in a code are called codewords. A code $D$ in $G$ is a dominating set of $G$ if $D$ has a nonempty intersection with the closed neighborhood of every vertex of $G$. A code $D$ separates two distinct vertices $x$ and $y$ if $N[x] \cap D \neq N[y] \cap D$. When $D=\{u\}$ we say that $u$ separates $x$ and $y$. An identifying code (ID code for short) of $G$ is a code $C$ that is a dominating set of $G$ with the additional property that $C$ separates every pair of distinct vertices of $G$. The minimum cardinality of an ID code of $G$ is denoted $\gamma^{\mathrm{ID}}(G)$. Note that any graph having two vertices with the same closed neighborhood (so-called twins) does not have an ID code.

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the direct product of $G_{1}$ and $G_{2}$, denoted $G_{1} \times G_{2}$, is the graph whose vertex set is the Cartesian product, $V_{1} \times V_{2}$, and whose edge set is $E\left(G_{1} \times G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E_{1}\right.$ and $\left.u_{2} v_{2} \in E_{2}\right\}$. Direct products have been studied for some time, and extensive information on their structural properties can be found in [11].

For a positive integer $n$ we write $[n]$ to denote the set $\{1,2, \ldots, n\}$, and $[n]$ will be the vertex set of the complete graph $K_{n}$. In the direct product $K_{n} \times K_{m}$ we refer to a column as the set of all vertices having the same first coordinate. A row is the set of all vertices with the same second coordinate. In particular, for $i \in[n]$, the $i^{\text {th }}$ column is $C_{i}=\{(i, j) \mid j \in[m]\}$. Similarly, for $j \in[m]$ the $j^{\text {th }}$ row is the set $R_{j}=\{(i, j) \mid i \in[n]\}$. Using this terminology we see that two vertices of $K_{n} \times K_{m}$ are adjacent precisely when they belong to different rows and to different columns. In any figures rows will be horizontal and columns vertical. For ease of reference in this paper we refer to $K_{n}$ as the first factor of $K_{n} \times K_{m}$ and $K_{m}$ as the second factor. The two product graphs $K_{n} \times K_{m}$ and $K_{m} \times K_{n}$ are clearly isomorphic under a natural map. Throughout the remainder of this work we always have the smaller factor first.

Let $G=K_{n} \times K_{m}$, and suppose that $C$ is a code in $G$. The column span of $C$ is the set
of all columns of $G$ that have a nonempty intersection with $C$. The number of columns in the column span of $C$ is denoted by $c s(C)$. Similarly, the set of all rows of $G$ that contain at least one member of $C$ is the row span of $C$; its size is denoted $\operatorname{rs}(C)$. For a vertex $v=(i, j)$ of $G$ we say that $v$ is column-isolated in $C$ if $C \cap C_{i}=\{v\}$. Similarly, if $C \cap R_{j}=\{v\}$ then we say that $v$ is row-isolated in $C$. If $v$ is both column-isolated and row-isolated in $C$, we simply say $v$ is isolated in $C$. When there is no chance of confusion and the set $C$ is clear from the context we shorten these to column-isolated, row-isolated and isolated, respectively.

## 2 Main Results

Recently, Goddard and the second author determined the minimum cardinality of an identifying code for the Cartesian product of two nontrivial complete graphs [8].

Theorem 1. [8] For $2 \leq n \leq m$, we have

$$
\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)= \begin{cases}m+\lfloor n / 2\rfloor & \text { if } m \leq 3 n / 2 \\ 2 m-n & \text { if } m \geq 3 n / 2\end{cases}
$$

In this paper we determine the minimum cardinality of an identifying code for the direct product of any two nontrivial complete graphs. Note that the direct product of two complete graphs is the complement of the Cartesian product of those same complete graphs. However, the orders of the identifying codes for these pairs of graphs are quite different. The remainder of this section contains the summary of the exact results.

Note that $K_{2} \times K_{2}$ has vertices with identical closed neighborhoods and so has no ID code.
Theorem 2. For any positive integer $m \geq 5$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m-1$. In addition, if $3 \leq m \leq 4$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m$.

For $3 \leq n \leq 5$ and $n \leq m \leq 2 n-1$ the values of $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ were computed by computer program and are given in the following table.

| $n \backslash^{m}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 4 | 5 |  |  |  |  |
| 4 |  | 5 | 6 | 7 | 7 |  |  |
| 5 |  |  | 6 | 7 | 8 | 9 | 9 |

Table 1: $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ for small $n$ and $m$
The remaining cases are handled based on the order of the second factor relative to the first factor. Theorem 3 presents this number if both cliques have order at least 3 and one clique is sufficiently large compared to the other; its proof is given in Section 4.

Theorem 3. For positive integers $n$ and $m$ where $n \geq 3$ and $m \geq 2 n$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=m-1
$$

In all other cases (that is, for $6 \leq n \leq m \leq 2 n-1$ ), the minimum cardinality of an ID code for $K_{n} \times K_{m}$ is one of the values $\lfloor 2(n+m) / 3\rfloor$ or $\lceil 2(n+m) / 3\rceil$. The number $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ depends on the congruence of $n+m$ modulo 3 . It turns out there are only two general cases instead of three, but one of them has an exception to the easily stated formula. The exact values are given in the following results whose proofs are given in Section 4.

Theorem 4. Let $n$ and $m$ be positive integers such that $6 \leq n \leq m \leq 2 n-1$. If $n+m \equiv 0(\bmod 3)$ or $n+m \equiv 2(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lfloor\frac{2 m+2 n}{3}\right\rfloor .
$$

Theorem 5. For a positive integer $n \geq 6$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{2 n-5}\right)=2 n-4
$$

Theorem 6. Let $n$ and $m$ be positive integers such that $6 \leq n \leq m \leq 2 n-2$ and $m \neq 2 n-5$. If $n+m \equiv 1(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil .
$$

## 3 Preliminary Properties

In this section we prove a number of results that will be useful in verifying the minimum size of ID codes in the direct product of two complete graphs. It will be helpful in what follows to remember that a vertex is adjacent to $(i, j)$ in $K_{n} \times K_{m}$ precisely when its first coordinate is different from $i$ and its second coordinate is different from $j$. Also, recall that we are assuming throughout that $n \leq m$.

Lemma 7. If $C$ is an identifying code of $K_{n} \times K_{m}$, then $\operatorname{cs}(C) \geq n-1$ and $r s(C) \geq m-1$. In particular, $|C| \geq m-1$.

Proof. Suppose that for some $r \neq s, C \cap R_{r}=\emptyset=C \cap R_{s}$. For any fixed $i \in[n], C \cap N[(i, r)]=$ $C \backslash C_{i}=C \cap N[(i, s)]$. Since this violates $C$ being an ID code, $K_{n} \times K_{m}$ has at most one row disjoint from $C$. A similar argument shows that $K_{n} \times K_{m}$ has no more than one column disjoint from $C$. Consequently, $|C| \geq m-1$.

By considering $N[x]$, the following result is obvious but useful. We omit its proof.
Lemma 8. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ and $x=(i, r) \in C$, then $C$ separates $x$ from any $y \in\left(R_{r} \cup C_{i}\right) \backslash\{x\}$.

Lemma 8 addresses separating two vertices that belong to the same row or to the same column. The next result concerns vertices that are not in a common row or common column, that is, two vertices at opposite "corners" of a two-row and two-column configuration in $K_{n} \times K_{m}$.

Lemma 9. (4-Corners Property) Suppose $C$ is a dominating set of $K_{n} \times K_{m}$. For each $(i, r),(j, s) \in$ $K_{n} \times K_{m}$ with $i \neq j, r \neq s, C$ separates $(i, r)$ and $(j, s)$ if and only if

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

Proof. Suppose that $i \neq j$ and $r \neq s$, and let $C_{i}, C_{j}$ and $R_{r}, R_{s}$ be the corresponding columns and rows of $K_{n} \times K_{m}$. Write $x=(i, r), y=(j, s), w=(i, s)$ and $z=(j, r)$, and define

$$
\begin{aligned}
& A=C \backslash\left(C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)\right) \\
& B=\left[C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)\right] \backslash\{x, y, w, z\} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& C \cap N[x]=A \cup(C \cap\{x, y\}) \cup\left(C \cap\left(\left(R_{s} \cup C_{j}\right) \backslash\{x, y, w, z\}\right)\right) \\
& C \cap N[y]=A \cup(C \cap\{x, y\}) \cup\left(C \cap\left(\left(R_{r} \cup C_{i}\right) \backslash\{x, y, w, z\}\right)\right) .
\end{aligned}
$$

Therefore, $C$ separates $x$ and $y$ if and only if at least one of the two disjoint sets $C \cap\left(\left(R_{s} \cup C_{j}\right) \backslash\right.$ $\{x, y, w, z\})$ or $C \cap\left(\left(R_{r} \cup C_{i}\right) \backslash\{x, y, w, z\}\right)$ is non-empty. Since $B$ is the union of these 2 sets, it follows that $C$ separates $x$ and $y$ if and only if $B \neq \emptyset$, or equivalently if and only if

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

We will say that a dominating set $D$ of $K_{n} \times K_{m}$ has the 4-corners property with respect to columns $C_{i}, C_{j}$ and rows $R_{r}, R_{s}$ if

$$
D \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

Hence, if a dominating set $D$ of $K_{n} \times K_{m}$ is an ID code, then $D$ has the 4-corners property with respect to every pair of columns and every pair of rows. Each of the next three results follows immediately from this fact.

Corollary 10. If $C$ is an identifying code of $K_{n} \times K_{m}$, then $C$ has no more than one isolated codeword.

Corollary 11. Let $C$ be an identifying code of $K_{n} \times K_{m}$. If $\operatorname{cs}(C)=n-1$, then there does not exist a column $C_{j}$ such that $C \cap C_{j}=\{u, v\}$ where both $u$ and $v$ are row-isolated. Similarly, there is no row $R_{r}$ containing exactly two codewords each of which is column-isolated if rs $(C)=m-1$.

Corollary 12. If $C$ is an identifying code of $K_{n} \times K_{m}$ such that $\operatorname{cs}(C)=n-1$ and $r s(C)=m-1$, then $C$ has no isolated codeword.

The next two results will be used to construct ID codes, thereby providing an upper bound for $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$. Which one is used will depend on the congruence of $n+m$ modulo 3 .

Proposition 13. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ satisfies the following conditions, then $C$ is an identifying code of $K_{n} \times K_{m}$.
(1) There exist $1 \leq n_{1}<n_{2}<n_{3} \leq n$ and $1 \leq m_{1}<m_{2}<m_{3} \leq m$ such that $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right) \in C$;
(2) $C$ contains at most one isolated vertex, and every other vertex in $C$ is row-isolated or columnisolated; and
(3) $r s(C)=m$ and $c s(C)=n$.

Proof. Assume $C$ is as specified. For ease of reference we denote the graph $K_{n} \times K_{m}$ by $G$ throughout this proof. By the first assumption above it follows immediately that $C$ dominates $G$ since $\left\{\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right)\right\}$ does.

We need only to show that $C$ separates every pair $x, y$ of distinct vertices. First assume that $x$ and $y$ are in the same column. If $x$ or $y$ belongs to $C$, then Lemma 8 shows that $C$ separates them. If neither is in $C$, then by our assumption that $r s(C)=m$ and $c s(C)=n$ we can choose a vertex $z \in C$ from the same row as $x$. This vertex $z$ separates $x$ and $y$. Similarly, $C$ separates any two vertices belonging to a common row.

Now, assume $x=(i, r)$ and $y=(j, s)$ where $1 \leq i<j \leq n$ and $1 \leq r<s \leq m$. Any $v=(k, t) \in C$ that is not isolated in $C$ is row-isolated or column-isolated but not both, and it follows that either $\left|C \cap C_{k}\right| \geq 2$ or $\left|C \cap R_{t}\right| \geq 2$.
(a) Suppose $x \in C$ but is not isolated in $C$. As above, either $\left|C \cap C_{i}\right| \geq 2$ or $\left|C \cap R_{r}\right| \geq 2$. Assume without loss of generality that $\left|C \cap C_{i}\right| \geq 2$. It follows that either $(i, s) \in C$ or there exists $1 \leq t \leq m$ where $t \notin\{r, s\}$ and $(i, t) \in C$. In the first case where we have $(i, s) \in C$, it follows that $(i, s)$ is row-isolated, and thus $y \notin C$. However, each column of $G$ is in the column span of $C$ so there exists $1 \leq p \leq m$ where $p \notin\{r, s\}$ and $(j, p) \in C$ since $(i, r)$ and $(i, s)$ are row-isolated. Thus, $(j, p) \in C \cap N[x]$ but $(j, p) \notin C \cap N[y]$. Hence, $C$ separates $x$ and $y$. On the other hand, if there exists $1 \leq t \leq m$ where $t \notin\{r, s\}$ and $(i, t) \in C$, then $(i, t) \in C \cap N[y]$ but $(i, t) \notin C \cap N[x]$. Again, this implies that $C$ separates $x$ and $y$. If we had instead assumed that $\left|C \cap R_{r}\right| \geq 2$, that is we had assumed $x$ is column-isolated and not row-isolated, then a similar argument shows that $C$ separates $x$ and $y$.
(b) Suppose $x \in C$ and is isolated in $C$. Since $x$ is both row-isolated and column-isolated, $C=C \cap N[x]$. First assume that $y \notin C$. Since $C_{j}$ is in the column span of $C$, there exists $1 \leq t \leq m$ with $t \notin\{r, s\}$ such that $(j, t) \in C$, and $(j, t)$ separates $x$ and $y$. On the other hand, if $y \in C$, then either $\left|C \cap C_{j}\right| \geq 2$ or $\left|C \cap R_{s}\right| \geq 2$ since $y$ is not isolated. In either case, $C \cap N[y] \neq C$, and therefore $C$ separates $x$ and $y$.
(c) Suppose $x, y \in V(G) \backslash C$. If we assume that $C$ does not separate $x$ and $y$, then because each row of $G$ is in the row span of $C$ and each column of $G$ is in the column span of $C$, it follows that

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)=\{(i, s),(j, r)\} .
$$

Thus, by definition, both $(i, s)$ and $(j, r)$ are isolated in $C$, contradicting the second assumption. Hence, $C$ separates $x$ and $y$.

Therefore, $C$ separates every pair of distinct vertices, and thus $C$ is an ID code of $K_{n} \times K_{m}$.
Proposition 14. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ satisfies the following conditions, then $C$ is an identifying code of $K_{n} \times K_{m}$.
(1) There exist $1 \leq n_{1}<n_{2}<n_{3} \leq n$ and $1 \leq m_{1}<m_{2}<m_{3} \leq m$ such that $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right) \in C ;$
(2) $C$ contains at most one isolated vertex, and every other vertex in $C$ is row-isolated or columnisolated;
(3) $r s(C)=m-1$ and $c s(C)=n$; and
(4) If $R_{r}$ has the property that every $v \in C \cap R_{r}$ is column-isolated but not row-isolated, then $\left|C \cap R_{r}\right| \geq 3$.

Proof. As in the proof of Proposition 13 we see that $C$ dominates $G=K_{n} \times K_{m}$.
We show that $C$ separates every pair $x, y$ of distinct vertices in $G$. Let $R_{r}$ be the row not in the row span of $C$. Notice that $G \backslash R_{r} \cong K_{n} \times K_{m-1}$ and that $C$ satisfies the hypotheses of Proposition 13 when considered as a subset of $V(G) \backslash R_{r}$. Thus, $C$ separates $x, y$ if neither is in $R_{r}$, and so we may assume that $x \in R_{r}$, say $x=(i, r)$.
(a) First assume that $y=(j, r)$ with $i \neq j$. Since $c s(C)=n$, there exists $1 \leq s \leq m$ such that $r \neq s$ and $(i, s) \in C$. This vertex $(i, s)$ separates $x$ and $y$. Next, assume that $y=(i, t)$ for some $1 \leq t \leq m$ with $t \neq r$. If $y \in C$, then $y$ separates $x$ and $y$. However, if $y \notin C$, then since each row of $G$ other than $R_{r}$ is in the row span of $C$, there exists $1 \leq j \leq n$ with $i \neq j$ such that $(j, t) \in C$. It follows that $(j, t)$ separates $x$ and $y$.
(b) Next, assume that $y=(j, s)$ where $i \neq j$ and $r \neq s$. If we assume that $C$ does not separate $x$ and $y$, then $C$ does not satisfy the 4-Corners Property with respect to columns $C_{i}, C_{j}$ and rows $R_{r}, R_{s}$. In addition, since $R_{r}$ is not in the row span of $C$,

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \subseteq\{(i, s),(j, s)\}
$$

Since both $C_{i}$ and $C_{j}$ are in the column span of $C$, it follows that $C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)=$ $\{(i, s),(j, s)\}$. This means that $R_{s}$ contains exactly two members of $C$ and they are both column-isolated, contradicting one of the assumptions. Hence, this case cannot occur either, and it follows that $C$ separates $x$ and $y$.

Therefore, $C$ is an ID code of $K_{n} \times K_{m}$.

## 4 Proofs of Main Results

In this section we prove all of our main results. The general strategy will be to construct an ID code of the claimed optimal size (by employing Propositions 13 and 14) and prove the given direct product has no smaller ID code.

We treat the smallest case first.
Theorem 1. For any positive integer $m \geq 5$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m-1$. In addition, if $3 \leq m \leq 4$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m$.

Proof. If $C$ is any ID code of $K_{2} \times K_{3}$, then by Lemma 7 it follows that $r s(C) \geq 2$. No subset of two elements in different rows dominates $K_{2} \times K_{3}$, and so $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{3}\right) \geq 3$. It is easy to check that $\{(1,1),(1,2),(1,3)\}$ is an ID code. A similar argument shows that $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{4}\right)=4$.

If $m \geq 5$, it follows from Lemma 7 that $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right) \geq m-1$, and it is easily checked that $\{(1,1),(1,2)\} \cup\{(2, r) \mid 3 \leq r \leq m-1\}$ is an ID code.

Now we turn our attention to the case when the first factor has order at least 3 and the second factor is sufficiently larger than the first.

Theorem 2. For positive integers $n$ and $m$ where $n \geq 3$ and $m \geq 2 n$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=m-1
$$

Proof. Consider the set

$$
D=\{(i, 2 i-1),(i, 2 i) \mid i \in[n-1]\} \cup\{(n, j) \mid 2 n-1 \leq j \leq m-1\}
$$

Notice that each $v$ in $D$ is row-isolated but not column-isolated, $r s(D)=m-1$ and $\operatorname{cs}(D)=n$. Furthermore, $(1,1),(2,3)$ and $(3,5)$ are in $D$. Thus, Proposition 14 guarantees that $D$ is an ID code, and Lemma 7 gives the desired result.

We now focus on direct products of the form $K_{n} \times K_{m}$ where $6 \leq n \leq m \leq 2 n-1$ and prove that in all cases

$$
\begin{equation*}
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor \leq \gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right) \leq\left\lceil\frac{2 m+2 n}{3}\right\rceil \tag{1}
\end{equation*}
$$

For the remainder of this paper, when considering any ID code $C$ of $G=K_{n} \times K_{m}$ we define

$$
A_{C}=\{v \in C \mid v \text { is row-isolated in } C\}
$$

and

$$
B_{C}=\{v \in C \mid v \text { is column-isolated in } C\}
$$

Let $\left|A_{C}\right|=x$, and let $p$ denote the number of columns $C_{i}$ of $G$ such that $\left|C \cap C_{i}\right| \geq 2$ and $C \cap C_{i} \subseteq A_{C}$. Similarly, let $\left|B_{C}\right|=y$, and let $q$ represent the number of rows $R_{r}$ of $G$ such that $\left|C \cap R_{r}\right| \geq 2$ and $C \cap R_{r} \subseteq B_{C}$. Notice that $C$ contains at most one isolated codeword, in which case $\left|A_{C} \cap B_{C}\right|=1$. Otherwise, $A_{C} \cap B_{C}=\emptyset$. Moreover, we always have $|C| \geq\left|A_{C} \cup B_{C}\right| \geq x+y-1$.

The approach we take in the proof of Theorem 3, Theorem 5 and Theorem 6 will be to show that any code of cardinality smaller than the claimed value will violate some consequence of the 4-Corners Property. Which consequence will depend on the particular cardinalities of the row span and column span.

Theorem 3. If $n$ and $m$ are positive integers such that $6 \leq n \leq m \leq 2 n-1$ and $n+m \equiv 0$ $(\bmod 3)$ or $n+m \equiv 2(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lfloor\frac{2 m+2 n}{3}\right\rfloor .
$$

Proof. Suppose $C$ is an ID code of $G=K_{n} \times K_{m}$ such that $|C| \leq\left\lfloor\frac{2 n+2 m}{3}\right\rfloor-1$. We consider four cases based on the possible values of $c s(C)$ and $r s(C)$.

Case 1 Suppose $c s(C)=n$ and $r s(C)=m$.
Since $c s(C)=n$ and $\left|B_{C}\right|=y$, there are $n-y$ columns that each contain at least two codewords. Thus, $\left|C \backslash B_{C}\right| \geq 2(n-y)$, which implies $\frac{2 m+2 n}{3}-1 \geq|C| \geq 2 n-y$. It follows that $y \geq \frac{4 n-2 m}{3}+1$. Similarly, we get $x \geq \frac{4 m-2 n}{3}+1$. Together these imply that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n}{3}+1
$$

This is clearly a contradiction, and hence no such $C$ exists with $c s(C)=n$ and $r s(C)=m$.
Case 2 Suppose $c s(C)=n-1$ and $r s(C)=m$.
Note that since each codeword in $B_{C}$ is column-isolated and $c s(C)=n-1$, there exist at least two codewords in each of the remaining $n-1-y$ columns disjoint from the column span of $B_{C}$. However, Corollary 11 guarantees that $\left|C \cap C_{j}\right| \geq 3$ for any column $C_{j}$ for which $\left|C \cap C_{j}\right| \geq 2$ and $C \cap C_{j} \subseteq A_{C}$. Since $p$ represents the number of such columns, $\left|C \backslash B_{C}\right| \geq 2(n-1-y-p)+3 p=2 n-2-2 y+p$. Consequently, $|C| \geq 2 n-2-y+p$, and it follows that $y \geq \frac{4 n-2 m}{3}-1+p$.
Similarly, since $\left|A_{C}\right|=x$ and $r s(C)=m,\left|C \backslash A_{C}\right| \geq 2(m-x)$, which implies $|C| \geq 2 m-x$. From Case 1 we see that this gives $x \geq \frac{4 m-2 n}{3}+1$. Moreover, $|C| \geq x+y-1$ so that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n}{3}+p-1
$$

Hence, $p=0$, and we have equality in the above so that

$$
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1=|C|=x+y-1
$$

It follows that $C=A_{C} \cup B_{C}$. If there exists $v \in C \backslash B_{C}$, say $v \in C_{i}$, then $C_{i}$ contains an additional codeword that is also row-isolated. Hence, $p$ is at least 1. However, this contradicts $p=0$ since each codeword is either row-isolated or column-isolated. Consequently, $m=\operatorname{rs}(C) \leq|C|=\left|B_{C}\right| \leq n-1 \leq m-1$. This contradiction shows that this case cannot occur.

Case 3 Suppose $c s(C)=n$ and $r s(C)=m-1$.

If we interchange the roles of rows and columns in Case 2, then we are led to $q=0$ and

$$
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1=|C|=x+y-1
$$

Thus, $C=A_{C} \cup B_{C}$. On the other hand, since $\operatorname{cs}(C)=n$ it follows as in Case 1 that

$$
y \geq \frac{4 n-2 m}{3}+1 \geq \frac{4 n-2(2 n-1)}{3}+1=\frac{5}{3} .
$$

Since $y$ is an integer, we see that $C$ has at least two column-isolated codewords. One of these, say $v$, is isolated since $|C|=x+y-1$. Let $w$ be a column-isolated codeword with $w \neq v$, and assume that $w \in R_{j}$. Since $w$ is not isolated but is column-isolated, $R_{j}$ contains another codeword besides $w$. All codewords in $R_{j}$ are therefore in $B_{C}$, and thus $q \geq 1$. This contradiction shows that this case cannot occur.

Case 4 Suppose that $c s(C)=n-1$ and $r s(C)=m-1$. From Case 2 and Case 3, we see that

$$
y \geq \frac{4 n-2 m}{3}-1+p \quad \text { and } \quad x \geq \frac{4 m-2 n}{3}-1+q
$$

Since $c s(C)=n-1$ and $r s(C)=m-1$, it follows from Corollary 12 that $C$ does not contain an isolated vertex. It follows that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n}{3}-2+p+q
$$

Hence, $p+q \leq 1$.
Suppose $p=1$. Consequently, we have equality throughout the above inequality, and thus $C=A_{C} \cup B_{C}$. Suppose there exists $v \in B_{C}$, say $v \in R_{r}$. Since $q=0$ and there are no isolated codewords, it follows that $C$ contains another codeword $u$ in $R_{r}$ that is not column-isolated. But $u \notin A_{C} \cup B_{C}$, which is a contradiction. Therefore, $C=A_{C}$. Since $p=1$ we are led to conclude that $c s(C)=1$, which is another contradiction.
To show that $q=1$ is not possible we simply interchange the roles of $A_{C}$ and $B_{C}$ in the above.
Finally, suppose $p=0=q$. Since $p=0$, any column that contains a row-isolated codeword would also have to contain a codeword that is not row-isolated. Since there can exist at most
one of these to guarantee $|C| \leq\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1$, there is a column $C_{i}$ such that $A_{C} \subseteq C_{i}$, and for some $r,(i, r) \in C \backslash\left(A_{C} \cup B_{C}\right)$. Similarly, since $q=0$, if there exists a row containing a column-isolated codeword, then that row contains a codeword that is not column-isolated. Since $\left|C \backslash\left(A_{C} \cup B_{C}\right)\right| \leq 1$, such a codeword must be $(i, r)$. This implies that $\frac{2 m+2 n}{3}-1 \geq$ $|C| \geq m-1+n-2$, and this implies that $n+m \leq 6$, contradicting our assumption.

Therefore, every ID code of $K_{n} \times K_{m}$ has cardinality at least $\left\lfloor\frac{2 m+2 n}{3}\right\rfloor$.
An application of Proposition 13 shows that the following sets are ID codes of cardinality $\left\lfloor\frac{2 m+2 n}{3}\right\rfloor$ and finishes the proof. See Figure 1 for several specific instances of these constructions.

If $n+m \equiv 0(\bmod 3)$, let

$$
D_{1}=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j),(a+2 j, 2 a+j) \mid 1 \leq j \leq b\}
$$

where $a=\frac{2 m-n}{3}$ and $b=\frac{2 n-m}{3}$. For $n+m \equiv 2(\bmod 3)$ but $m \neq 2 n-1$, let $a=\frac{2 m-n-1}{3}, b=\frac{2 n-m-1}{3}$, and

$$
D_{2}=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j),(a+2 j, 2 a+j) \mid 1 \leq j \leq b\} \cup\{(n, m)\}
$$

Finally, if $m=2 n-1$, let

$$
D_{3}=\{(i, 2 i-1),(i, 2 i) \mid i \in[n-1]\} \cup\{(n, 2 n-1)\} .
$$

The following figure illustrates ID codes of optimal order for several of the cases of Theorem 3. The vertices of the direct products in the figure are represented, but the edges are omitted for clarity. Recall that columns are vertical and rows are horizontal. Solid vertices indicate the members of an optimal ID code in each case.

(a) $K_{6} \times K_{6}$

(b) $K_{6} \times K_{8}$

Figure 1: Examples of ID codes when $n+m \equiv 0,2(\bmod 3)$
For a fixed $n \geq 6$, the lone exception to the formula $\left\lceil\frac{2 m+2 n}{3}\right\rceil$ for $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ where $n \leq m \leq$ $2 n-2$ and $n+m$ congruent to 1 modulo 3 is the instance $m=2 n-5$. We now prove Theorem 5 , which shows the correct value is $\left\lfloor\frac{2(2 n-5)+2 n}{3}\right\rfloor$. We restate it here for convenience.

Theorem 4. For a positive integer $n \geq 6$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{2 n-5}\right)=2 n-4
$$

Proof. Assume there exists an ID code $C$ for $K_{n} \times K_{2 n-5}$ such that $|C| \leq 2 n-5$. Since $r s(C) \geq$ $2 n-6$, we consider the following two cases.

Case 1 Suppose that $r s(C)=2 n-6$.
Since each codeword in $A_{C}$ is row-isolated and $\operatorname{rs}(C)=2 n-6$, there exist at least two codewords in each of the remaining $2 n-6-x$ rows disjoint from the row span of $A_{C}$. However, Corollary 11 guarantees that $\left|C \cap R_{r}\right| \geq 3$ for any row $R_{r}$ where $C \cap R_{r} \subseteq B_{C}$. Since $q$ represents the number of these rows, $\left|C \backslash A_{C}\right| \geq 2(2 n-6-x-q)+3 q$, which implies $|C| \geq 4 n-12-x+q$. Consequently, $2 n-5 \geq 4 n-12-x+q$, which implies $x \geq 2 n-7+q$.
Similarly, since $\operatorname{cs}(C) \geq n-1$ and each codeword in $B_{C}$ is column-isolated, there are at least $n-1-y$ columns disjoint from the column span of $B_{C}$ that each contain at least two codewords. Thus, $\left|C \backslash B_{C}\right| \geq 2(n-1-y)$, which implies that $|C| \geq 2 n-2-y$. Therefore, $y \geq 3$. It follows that

$$
2 n-5 \geq|C| \geq x+y-1 \geq 2 n-5+q
$$

Thus, $q=0$. Moreover, we have equality in the above, and therefore $C=A_{C} \cup B_{C}$. On the other hand, $y \geq 3$ and only one of these column-isolated codewords can be isolated. Consequently, $q \geq 1$ since each codeword of $C$ is either row-isolated or column-isolated, which is a contradiction.

Case 2 Suppose $\operatorname{rs}(C)=2 n-5$.
Using a similar argument as in Case 1, we have $\left|C \backslash A_{C}\right| \geq 2(2 n-5-x)$, which implies $|C| \geq 4 n-10-x$. This implies $2 n-5 \geq|C| \geq x \geq 2 n-5$. Therefore, it follows that $C=A_{C}$, and thus $c s(C)=c s\left(A_{C}\right) \leq \frac{2 n-6}{2}+1=n-2$, contradicting Lemma 7 .

Therefore, no such identifying code $C$ exists with $|C| \leq 2 n-5$. It follows that $\gamma^{\mathrm{ID}}(G) \geq 2 n-4$.
An application of Proposition 14 shows that the set
$D=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq n-4\} \cup\{(n-3,2 n-7),(n-2,2 n-7),(n-1,2 n-7),(n, 2 n-6)\}$
is an ID code of $K_{n} \times K_{2 n-5}$ of cardinality $2 n-4$.
Theorem 5. Let $n$ and $m$ be positive integers such that $6 \leq n \leq m \leq 2 n-2$ and $m \neq 2 n-5$. If $n+m \equiv 1(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil
$$

Proof. Notice that $\left\lceil\frac{2 m+2 n}{3}\right\rceil=\frac{2 m+2 n+1}{3}$. Assume that there exists an ID code $C$ for $K_{n} \times K_{m}$ such that $|C| \leq \frac{2 n+2 m+1}{3}-1$. We again consider four cases based on the possible values of $c s(C)$ and $r s(C)$.

Case 1 Suppose $c s(C)=n$ and $r s(C)=m$.
Using reasoning similar to that in Case 1 of the proof of Theorem 3, we have $\left|C \backslash B_{C}\right| \geq 2(n-y)$. This implies that $|C| \geq 2 n-y$, and hence

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq 2 n-y
$$

It follows that $y \geq \frac{4 n-2 m+2}{3}$. Similarly, we have that $x \geq \frac{4 m-2 n+2}{3}$. On the other hand, we know $|C| \geq x+y-1$. Consequently, $\frac{2 m+2 n+1}{3}-1 \geq x+y-1 \geq \frac{2 m+2 n+1}{3}$, which is clearly a contradiction.

Case 2 Suppose $c s(C)=n-1$ and $r s(C)=m$.
Since $\left|B_{C}\right|=y$ and $c s(C)=n-1$, there exist at least two codewords in each of the remaining $n-1-y$ columns that are disjoint from the column span of $B_{C}$. However, Corollary 11 guarantees $\left|C \cap C_{j}\right| \geq 3$ for any such column $C_{j}$ where $C \cap C_{j} \subseteq A_{C}$. Since $p$ represents the number of these columns, $\left|C \backslash B_{C}\right| \geq 2(n-1-y-p)+3 p=2 n-2-2 y+p$. As a result it follows that $y \geq \frac{4 n-2 m-4}{3}+p$.
Similarly, since $\operatorname{rs}(C)=m$ and $x=\left|A_{C}\right|$ we get $\left|C \backslash A_{C}\right| \geq 2(m-x)$, which implies $|C| \geq$ $2 m-x$. As in Case 1 it follows that $x \geq \frac{4 m-2 n+2}{3}$. This yields

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+p-2 .
$$

Thus, $p \leq 1$. Assume first that $p=1$. This yields equality in the above, and thus $C=A_{C} \cup B_{C}$, $y=\frac{4 n-2 m-1}{3}$ and $x=\frac{4 m-2 n+2}{3}$. Furthermore, $C$ contains an isolated codeword, call it $v$. Since $p=1$, there exists a column $C_{i}$ such that $A_{C} \backslash\{v\}=C \cap C_{i}$. It follows that $c s\left(A_{C}\right)=2$. On the other hand, $\operatorname{cs}(C)=n-1$ so $B_{C} \backslash\{v\}$ spans the remaining $n-3$ columns. Therefore, $n-3=\frac{4 n-2 m-1}{3}-1$, which contradicts the assumption that $n \leq m$.
Therefore, we conclude that $p=0$. First assume that $C$ contains no isolated codeword. This implies

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}+p-1 .
$$

Since $p=0$ we get equality throughout the above, and hence $C=A_{C} \cup B_{C}$. As in the proof of Case 2 of Theorem 3 we arrive at a contradiction. Therefore, $C$ contains an isolated codeword, say $v$. Because $p=0$, any column that contains a row-isolated codeword other than $v$ would also have to contain a codeword that is not row-isolated. Furthermore, the fact that $p=0$, together with

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+p-2
$$

implies that there exists at most one such codeword that is neither row-isolated nor columnisolated. Note that $x \geq \frac{4 m-2 n+2}{3} \geq 5$. Therefore, the row-isolated vertices other than $v$ are contained in precisely one column, say $C_{i}$. Hence, $A_{C} \backslash\{v\} \subseteq C \cap C_{i}$. We let (i,r) denote the codeword that is neither row-isolated nor column-isolated. This means $C=A_{C} \cup B_{C} \cup\{(i, r)\}$ and so $y=\frac{4 n-2 m-4}{3}$. It follows that $c s\left(A_{C}\right)=2$. On the other hand, $c s(C)=n-1$ so $B_{C} \backslash\{v\}$ spans the remaining $n-3$ columns. Therefore, $n-3=\frac{4 n-2 m-4}{3}-1$, which implies $2 m=n+2$, again contradicting the assumption that $n \leq m$.

Case 3 Suppose $c s(C)=n$ and $r s(C)=m-1$.

Since $\left|A_{C}\right|=x$ and $r s(C)=m-1$, there exist at least 2 codewords in each of the remaining $m-1-x$ rows disjoint from the row span of $A_{C}$. However, Corollary 11 guarantees $\left|C \cap R_{r}\right| \geq 3$ for any such row $R_{r}$ where $C \cap R_{r} \subseteq B_{C}$. Since $q$ represents the number of these rows, $\left|C \backslash A_{C}\right| \geq 2(m-1-x-q)+3 q=2 m-2-2 x+q$. This implies that $x \geq \frac{4 m-2 n-4}{3}+q$. Similarly, since $c s(C)=n$ and $\left|B_{C}\right|=y$ we get $\left|C \backslash B_{C}\right| \geq 2(n-y)$, which implies $|C| \geq 2 n-y$. As in Case 1 it follows that $y \geq \frac{4 n-2 m+2}{3}$. Consequently,

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+q-2 .
$$

Thus, $q \leq 1$. Assume first that $q=1$. This gives equality in the above, and thus $C=A_{C} \cup B_{C}$, $y=\frac{4 n-2 m+2}{3}$ and $x=\frac{4 m-2 n-1}{3}$. Furthermore, $C$ contains an isolated codeword, call it $v$. Since $q=1$, there exists a row $R_{r}$ such that $B_{C} \backslash\{v\}=C \cap R_{r}$. Thus, $r s\left(B_{C}\right)=2$. On the other hand, $\operatorname{rs}(C)=m-1$ so $A_{C} \backslash\{v\}$ spans the remaining $m-3$ rows. Therefore, $m-3=\frac{4 m-2 n-1}{3}-1$, which contradicts the assumption that $m \neq 2 n-5$.
Therefore, $q=0$. First assume $C$ contains no isolated codeword. Consequently, $C=A_{C} \cup B_{C}$ and since $q=0$, it follows that $C=A_{C}$. Since $\operatorname{cs}(C)=n$ and no isolated codeword exists, it follows that $|C| \geq 2 n$. Therefore, $\frac{2 m+2 n+1}{3}-1 \geq 2 n$, which implies $m \geq 2 n+1$. Because of this contradiction we conclude that $C$ contains an isolated codeword, say $v$.
Because $q=0$, any row that contains a column-isolated codeword other than $v$ would also have to contain a codeword that is not column-isolated.
Furthermore, the fact that $q=0$, together with

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+q-2
$$

implies that there exists at most one such codeword that is neither row-isolated nor columnisolated. Note that $y \geq \frac{4 n-2 m+2}{3} \geq 2$. Therefore, the column-isolated vertices other than $v$ are contained in precisely one row, say $R_{r}$, and hence $B_{C} \backslash\{v\} \subseteq C \cap R_{r}$. We let (i,r) denote the codeword that is neither row-isolated nor column-isolated. This means $C=A_{C} \cup B_{C} \cup\{(i, r)\}$ and so $x=\frac{4 m-2 n-4}{3}$. It follows that $r s\left(B_{C}\right)=2$. On the other hand, $r s(C)=m-1$ so $A_{C} \backslash\{v\}$ spans the remaining $m-3$ rows. Therefore, $m-3=\frac{4 m-2 n-4}{3}-1$, which implies $m=2 n-2$. However, in this specific case $x=2 n-4$ and $y=2$. Since $A_{C} \cap B_{C}=\{v\}$, it follows that

$$
n=c s(C) \leq \frac{\left|A_{C} \backslash\{v\}\right|}{2}+\left|B_{C}\right|=\frac{2 n-4-1}{2}+2=n-\frac{1}{2},
$$

which is a contradiction.
Case 4 Suppose that $c s(C)=n-1$ and $r s(C)=m-1$.
From Case 2 and Case 3, we see that

$$
y \geq \frac{4 n-2 m-4}{3}+p \quad \text { and } \quad x \geq \frac{4 m-2 n-4}{3}+q
$$

Since $c s(C)=n-1$ and $r s(C)=m-1$, it follows from Corollary 12 that $C$ does not contain an isolated codeword. Thus,

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}-3+p+q .
$$

Hence, $p+q \leq 2$.
(i) Suppose that $p=0$. For each column $C_{i}$ where $A_{C} \cap C_{i} \neq \emptyset$, there will exist another codeword in $C_{i}$ that is not row-isolated. To guarantee that $\frac{2 m+2 n+1}{3}-1 \geq|C|, C$ contains at most two such codewords. Therefore, $\operatorname{cs}\left(A_{C}\right) \leq 2$. If $c s\left(A_{C}\right)=2$, then $y=\frac{4 n-2 m-4}{3}$, and it follows that

$$
n-1=c s(C)=c s\left(A_{C}\right)+c s\left(B_{C}\right)=2+\frac{4 n-2 m-4}{3}
$$

This contradicts the assumption that $m \geq n$, and thus $\operatorname{cs}\left(A_{C}\right)<2$. On the other hand, $x \geq \frac{4 m-2 n-4}{3}+q \geq \frac{8}{3}$. Hence, $C$ contains precisely one codeword, say $v$, that is neither row-isolated nor column-isolated. This implies that $c s\left(A_{C}\right)=1$, and if we let $C_{i}$ represent the column containing these row-isolated vertices, then $v \in C_{i}$ and $\operatorname{cs}\left(A_{C} \cup\{v\}\right)=1$. Since

$$
n-1=c s(C)=c s\left(A_{C} \cup\{v\}\right)+c s\left(B_{C}\right)=1+c s\left(B_{C}\right),
$$

we know $c s\left(B_{C}\right)=n-2$. Therefore, $y=n-2$ since each vertex of $B_{C}$ is column-isolated. On the other hand, to guarantee $\frac{2 m+2 n+1}{3}-1 \geq|C|$, it is the case that $y \leq \frac{4 n-2 m-4}{3}+1$. Consequently, $n-2 \leq \frac{4 n-2 m-4}{3}+1$, which again implies that $m<n$. This contradiction shows that $p \neq 0$.
(ii) Suppose that $q=0$. For each row $R_{r}$ where $B_{C} \cap R_{r} \neq \emptyset$, there will exist another codeword in $R_{r}$ that is not column-isolated. Since $p \neq 0, C$ contains at most one such codeword and it follows that $r s\left(B_{C}\right) \leq 1$. On the other hand, $y \geq \frac{4 n-2 m-4}{3}+p \geq p \geq 1$. This implies $\operatorname{rs}\left(B_{C}\right)=1$, and $C$ contains precisely one codeword, say $v$, that is neither row-isolated nor column-isolated. Since $v$ is in the same row as the vertices of $B_{C}$, $r s\left(B_{C} \cup\{v\}\right)=1$. This implies

$$
m-1=r s(C)=r s\left(A_{C}\right)+r s\left(B_{C} \cup\{v\}\right)=r s\left(A_{C}\right)+1
$$

and consequently $m-2=r s\left(A_{C}\right)$. Therefore, $x=m-2$ since each vertex of $A_{C}$ is row-isolated. On the other hand, since $v$ is not column-isolated and $p=1$, it follows that $c s\left(A_{C} \cup\{v\}\right)=2$. Therefore,

$$
n-1=c s(C)=c s\left(A_{C} \cup\{v\}\right)+c s\left(B_{C}\right)=2+c s\left(B_{C}\right),
$$

which implies $y=c s\left(B_{C}\right)=n-3$. Combining these facts we get

$$
|C|=\left|A_{C} \cup B_{C} \cup\{v\}\right|=x+y+1=m+n-4
$$

However, $\frac{2 m+2 n+1}{3}-1 \geq|C|=m+n-4$, which implies $m+n \leq 10$. This contradicts our assumption that $n \geq 6$.
(iii) Since $p=1$ and $q=1$, then $x \geq \frac{4 m-2 n-4}{3}+1$ and $y \geq \frac{4 n-2 m-4}{3}+1$. It follows that

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}-1 .
$$

Thus, $C=A_{C} \cup B_{C}$. On the other hand, $c s\left(A_{C}\right)=1$ since $p=1$. Therefore, $B_{C}$ spans the remaining $n-2$ columns since $c s(C)=n-1$. Hence, $n-2=\frac{4 n-2 m-4}{3}+1$, which contradicts $m \geq n$.

Therefore, every ID code of $K_{n} \times K_{m}$ has cardinality at least $\left\lceil\frac{2 m+2 n}{3}\right\rceil$.

We now present ID codes to show that this lower bound is realized. Figure 2 contains examples of minimum cardinality ID codes for some cases covered in Theorem 6. As in Figure 1 the code consists of the solid vertices.

(b) $K_{6} \times K_{10}$

Figure 2: Several ID codes when $n+m \equiv 1(\bmod 3), m \neq 2 n-5$
If $m \neq 2 n-2$, let
$D_{1}=\{(1,1)\} \cup\{(i, 2 i),(i, 2 i+1) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j+1),(a+2 j, 2 a+j+1) \mid 1 \leq j \leq b\}$, where $a=\frac{2 m-n-2}{3}$ and $b=\frac{2 n-m+1}{3}$. It is straightforward to check that $D_{1}$ satisfies the properties of Proposition 13 and is therefore an ID code of $K_{n} \times K_{m}$.
If $m=2 n-2$, let

$$
D_{2}=\{(1,1)\} \cup\{(i, 2 i),(i, 2 i+1) \mid 1 \leq i \leq n-2\} \cup\{(n-1,2 n-2),(n, 2 n-2)\} .
$$

Again, one can verify that $D_{2}$ satisfies all properties of Proposition 13 and is therefore an ID code of $K_{n} \times K_{2 n-2}$.

Therefore, if $m \neq 2 n-5$ but $n+m \equiv 1(\bmod 3)$ and $6 \leq n \leq m \leq 2 n-2$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil
$$

## 5 Acknowledgments

The authors are grateful to the anonymous referees for their careful reading of the manuscript. Their suggestions and helpful comments are much appreciated.

## References

[1] Yael Ben-Haim and Simon Litsyn. Exact minimum density of codes identifying vertices in the square grid. SIAM J. Discrete Math., 19(1):69-82 (electronic), 2005.
[2] Nathalie Bertrand, Irène Charon, Olivier Hudry, and Antoine Lobstein. Identifying and locating-dominating codes on chains and cycles. European J. Combin., 25(7):969-987, 2004.
[3] Nathalie Bertrand, Irène Charon, Olivier Hudry, and Antoine Lobstein. 1-identifying codes on trees. Australas. J. Combin., 31:21-35, 2005.
[4] Uri Blass, Iiro Honkala, and Simon Litsyn. On binary codes for identification. J. Combin. Des., 8(2):151-156, 2000.
[5] Chunxia Chen, Changhong Lu, and Zhengke Miao. Identifying codes and locating-dominating sets on paths and cycles. Discrete Appl. Math., 159(15):1540-1547, 2011.
[6] Gérard Cohen, Iiro Honkala, Michel Mollard, Sylvain Gravier, Antoine Lobstein, Charles Payan, and Gilles Zémor. Improved identifying codes for the grid. Electron. J. Combin., 6:Research Paper 19, Comment, 3 pp. (electronic), 1999.
[7] Min Feng, Min Xu, and Kaishun Wang. Identifying codes of lexicographic product of graphs. arXiv:1106.3607v1 [math.CO], 9 pages, 2011.
[8] Wayne Goddard and Kirsti Wash. ID codes in Cartesian products of cliques. J. Combin. Math. Combin. Comput., pages 1-11, to appear.
[9] S. Gravier, J. Moncel, and A. Semri. Identifying codes of Cartesian product of two cliques of the same size. Electron. J. Combin., 15(1):Note 4, 7pp, 2008.
[10] Sylvain Gravier, Julien Moncel, and Ahmed Semri. Identifying codes of cycles. European J. Combin., 27(5):767-776, 2006.
[11] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2011. With a foreword by Peter Winkler.
[12] Iiro Honkala and Tero Laihonen. On identifying codes in the triangular and square grids. SIAM J. Comput., 33(2):304-312 (electronic), 2004.
[13] Iiro Honkala and Antoine Lobstein. On identifying codes in binary Hamming spaces. J. Combin. Theory Ser. A, 99(2):232-243, 2002.
[14] Svante Janson and Tero Laihonen. On the size of identifying codes in binary hypercubes. J. Combin. Theory Ser. A, 116(5):1087-1096, 2009.
[15] Ville Junnila and Tero Laihonen. Optimal identifying codes in cycles and paths. Graphs Combin., 28(4):469-481, 2012.
[16] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory, 44(2):599-611, 1998.
[17] Mark G. Karpovsky, Krishnendu Chakrabarty, Lev B. Levitin, and Dimiter R. Avresky. On the covering of vertices for fault diagnosis in hypercubes. Inform. Process. Lett., 69(2):99-103, 1999.
[18] Sandi Klavžar. Domination and independent domination in direct products of graphs. LaBRI, Bordeaux, France, 2011. Bordeaux Workshop on Identifying Codes.
[19] Antoine Lobstein. http://www.infres.enst.fr/ ${ }^{\sim}$ lobstein/debutbibidetlocdom.pdf.
[20] Julien Moncel. Monotonicity of the minimum cardinality of an identifying code in the hypercube. Discrete Appl. Math., 154(6):898-899, 2006.
[21] Min Xu, Krishnaiyan Thulasiraman, and Xiao-Dong Hu. Identifying codes of cycles with odd orders. European J. Combin., 29(7):1717-1720, 2008.


[^0]:    *The first author is Herman N. Hipp Professor of Mathematics at Furman University. This work was partially supported by a grant from the Simons Foundation (\#209654 to Douglas Rall). Corresponding author: Department of Mathematics, Furman University, Greenville, SC 29613 USA (phone: 1-864-294-3637, fax: 1-864-294-3641)

