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Abstract

An identifying code in a graph is a dominating set that also has the property that the
closed neighborhood of each vertex in the graph has a distinct intersection with the set. The
minimum cardinality of an identifying code in a graph G is denoted γID(G). It was recently
shown by Gravier, Moncel and Semri that γID(Kn�Kn) = b3n2 c. Letting n,m ≥ 2 be any
integers, we consider identifying codes of the direct product Kn × Km. In particular, we
answer a question of Klavžar and show the exact value of γID(Kn ×Km).
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1 Introduction

An identifying code in a graph is a dominating set that also has the property that the closed
neighborhood of each vertex has a distinct intersection with the set. Because of this characteristic
of the dominating set every vertex can be uniquely located by using this intersection with the
identifying code. The first to study identifying codes were Karpovsky, Chakrabarty and Levitin
[16] who used them to analyze fault-detection problems in multiprocessor systems. An excellent,
detailed list of references on identifying codes can be found on Antoine Lobstein’s webpage [19].
The usual invariant of interest is the minimum cardinality of an identifying code in a given graph.
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In this regard various families of graphs have been studied, including trees [3], paths [2, 5, 15],
cycles [2, 10, 21, 5, 15], and infinite grids [1, 6, 12].

In terms of graph products, a few of the more recent results have been in the study of hyper-
cubes [4, 13, 14, 17, 20], the Cartesian product of cliques [9, 8], and the lexicographic product of
two graphs [7]. A natural problem (posed by Klavžar [18] at the Bordeaux Workshop on Identifying
Codes in 2011) is to determine the order of a minimum identifying code in the direct product of
two complete graphs. In this paper we completely solve this problem.

The remainder of the paper is organized as follows. We first give some useful definitions
and terminology. In Section 2 we state the main results which give the cardinality of a minimum
identifying code for the direct product of any two nontrivial cliques. Section 3 is devoted to deriving
some important properties that will be useful in showing that a set of vertices is an ID code in a
direct product of two cliques. The proofs of the main results are given in Section 4.

1.1 Definitions and Notation

Given a simple undirected graph G and a vertex x of G, we let N(x) denote the open neighborhood
of x, that is, the set of vertices adjacent to x. The closed neighborhood of x is N [x] = N(x) ∪ {x}.
By a code in G we mean any nonempty subset of vertices in G. The vertices in a code are called
codewords. A code D in G is a dominating set of G if D has a nonempty intersection with the
closed neighborhood of every vertex of G. A code D separates two distinct vertices x and y if
N [x] ∩ D 6= N [y] ∩ D. When D = {u} we say that u separates x and y. An identifying code
(ID code for short) of G is a code C that is a dominating set of G with the additional property
that C separates every pair of distinct vertices of G. The minimum cardinality of an ID code of
G is denoted γID(G). Note that any graph having two vertices with the same closed neighborhood
(so-called twins) does not have an ID code.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the direct product of G1 and G2, denoted
G1 × G2, is the graph whose vertex set is the Cartesian product, V1 × V2, and whose edge set is
E(G1 × G2) = {(u1, u2)(v1, v2) |u1v1 ∈ E1 and u2v2 ∈ E2}. Direct products have been studied for
some time, and extensive information on their structural properties can be found in [11].

For a positive integer n we write [n] to denote the set {1, 2, . . . , n}, and [n] will be the vertex
set of the complete graph Kn. In the direct product Kn × Km we refer to a column as the set of
all vertices having the same first coordinate. A row is the set of all vertices with the same second
coordinate. In particular, for i ∈ [n], the ith column is Ci = {(i, j) | j ∈ [m]}. Similarly, for j ∈ [m]
the jth row is the set Rj = {(i, j) | i ∈ [n]}. Using this terminology we see that two vertices of
Kn×Km are adjacent precisely when they belong to different rows and to different columns. In any
figures rows will be horizontal and columns vertical. For ease of reference in this paper we refer to
Kn as the first factor of Kn×Km and Km as the second factor. The two product graphs Kn×Km

and Km ×Kn are clearly isomorphic under a natural map. Throughout the remainder of this work
we always have the smaller factor first.

Let G = Kn × Km, and suppose that C is a code in G. The column span of C is the set
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of all columns of G that have a nonempty intersection with C. The number of columns in the
column span of C is denoted by cs(C). Similarly, the set of all rows of G that contain at least one
member of C is the row span of C; its size is denoted rs(C). For a vertex v = (i, j) of G we say
that v is column-isolated in C if C ∩ Ci = {v}. Similarly, if C ∩ Rj = {v} then we say that v is
row-isolated in C. If v is both column-isolated and row-isolated in C, we simply say v is isolated in
C. When there is no chance of confusion and the set C is clear from the context we shorten these
to column-isolated, row-isolated and isolated, respectively.

2 Main Results

Recently, Goddard and the second author determined the minimum cardinality of an identifying
code for the Cartesian product of two nontrivial complete graphs [8].

Theorem 1. [8] For 2 ≤ n ≤ m, we have

γID(Kn�Km) =

{
m+ bn/2c if m ≤ 3n/2,

2m− n if m ≥ 3n/2.

In this paper we determine the minimum cardinality of an identifying code for the direct product
of any two nontrivial complete graphs. Note that the direct product of two complete graphs is the
complement of the Cartesian product of those same complete graphs. However, the orders of the
identifying codes for these pairs of graphs are quite different. The remainder of this section contains
the summary of the exact results.

Note that K2 ×K2 has vertices with identical closed neighborhoods and so has no ID code.

Theorem 2. For any positive integer m ≥ 5, γID(K2 ×Km) = m− 1. In addition, if 3 ≤ m ≤ 4,
γID(K2 ×Km) = m.

For 3 ≤ n ≤ 5 and n ≤ m ≤ 2n − 1 the values of γID(Kn ×Km) were computed by computer
program and are given in the following table.

n\m 3 4 5 6 7 8 9
3 4 4 5
4 5 6 7 7
5 6 7 8 9 9

Table 1: γID(Kn ×Km) for small n and m

The remaining cases are handled based on the order of the second factor relative to the first
factor. Theorem 3 presents this number if both cliques have order at least 3 and one clique is
sufficiently large compared to the other; its proof is given in Section 4.
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Theorem 3. For positive integers n and m where n ≥ 3 and m ≥ 2n,

γID(Kn ×Km) = m− 1 .

In all other cases (that is, for 6 ≤ n ≤ m ≤ 2n− 1), the minimum cardinality of an ID code for
Kn ×Km is one of the values b2(n+m)/3c or d2(n+m)/3e. The number γID(Kn ×Km) depends
on the congruence of n+m modulo 3. It turns out there are only two general cases instead of three,
but one of them has an exception to the easily stated formula. The exact values are given in the
following results whose proofs are given in Section 4.

Theorem 4. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n−1. If n+m ≡ 0 (mod 3)
or n+m ≡ 2 (mod 3), then

γID(Kn ×Km) =

⌊
2m+ 2n

3

⌋
.

Theorem 5. For a positive integer n ≥ 6,

γID(Kn ×K2n−5) = 2n− 4 .

Theorem 6. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n− 2 and m 6= 2n− 5. If
n+m ≡ 1 (mod 3), then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.

3 Preliminary Properties

In this section we prove a number of results that will be useful in verifying the minimum size of ID
codes in the direct product of two complete graphs. It will be helpful in what follows to remember
that a vertex is adjacent to (i, j) in Kn × Km precisely when its first coordinate is different from
i and its second coordinate is different from j. Also, recall that we are assuming throughout that
n ≤ m.

Lemma 7. If C is an identifying code of Kn ×Km, then cs(C) ≥ n − 1 and rs(C) ≥ m − 1. In
particular, |C| ≥ m− 1.

Proof. Suppose that for some r 6= s, C ∩ Rr = ∅ = C ∩ Rs. For any fixed i ∈ [n], C ∩ N [(i, r)] =
C \ Ci = C ∩ N [(i, s)]. Since this violates C being an ID code, Kn × Km has at most one row
disjoint from C. A similar argument shows that Kn ×Km has no more than one column disjoint
from C. Consequently, |C| ≥ m− 1.

By considering N [x], the following result is obvious but useful. We omit its proof.

Lemma 8. If C ⊆ V (Kn×Km) and x = (i, r) ∈ C, then C separates x from any y ∈ (Rr∪Ci)\{x}.
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Lemma 8 addresses separating two vertices that belong to the same row or to the same column.
The next result concerns vertices that are not in a common row or common column, that is, two
vertices at opposite “corners” of a two-row and two-column configuration in Kn ×Km.

Lemma 9. (4-Corners Property) Suppose C is a dominating set of Kn×Km. For each (i, r), (j, s) ∈
Kn ×Km with i 6= j, r 6= s, C separates (i, r) and (j, s) if and only if

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s}.

Proof. Suppose that i 6= j and r 6= s, and let Ci, Cj and Rr, Rs be the corresponding columns and
rows of Kn ×Km. Write x = (i, r), y = (j, s), w = (i, s) and z = (j, r), and define

A = C \ (C ∩ (Ci ∪ Cj ∪Rr ∪Rs))

B = [C ∩ (Ci ∪ Cj ∪Rr ∪Rs)] \ {x, y, w, z}.

Observe that

C ∩N [x] = A ∪ (C ∩ {x, y}) ∪ (C ∩ ((Rs ∪ Cj) \ {x, y, w, z}))
C ∩N [y] = A ∪ (C ∩ {x, y}) ∪ (C ∩ ((Rr ∪ Ci) \ {x, y, w, z})).

Therefore, C separates x and y if and only if at least one of the two disjoint sets C ∩ ((Rs ∪ Cj) \
{x, y, w, z}) or C ∩ ((Rr ∪ Ci) \ {x, y, w, z}) is non-empty. Since B is the union of these 2 sets, it
follows that C separates x and y if and only if B 6= ∅, or equivalently if and only if

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s} .

We will say that a dominating set D of Kn×Km has the 4-corners property with respect to columns
Ci, Cj and rows Rr, Rs if

D ∩ (Ci ∪ Cj ∪Rr ∪Rs) 6⊆ {i, j} × {r, s} .

Hence, if a dominating set D of Kn ×Km is an ID code, then D has the 4-corners property with
respect to every pair of columns and every pair of rows. Each of the next three results follows
immediately from this fact.

Corollary 10. If C is an identifying code of Kn × Km, then C has no more than one isolated
codeword.

Corollary 11. Let C be an identifying code of Kn × Km. If cs(C) = n − 1, then there does not
exist a column Cj such that C ∩ Cj = {u, v} where both u and v are row-isolated. Similarly, there
is no row Rr containing exactly two codewords each of which is column-isolated if rs(C) = m− 1.

Corollary 12. If C is an identifying code of Kn×Km such that cs(C) = n−1 and rs(C) = m−1,
then C has no isolated codeword.
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The next two results will be used to construct ID codes, thereby providing an upper bound for
γID(Kn ×Km). Which one is used will depend on the congruence of n+m modulo 3.

Proposition 13. If C ⊆ V (Kn ×Km) satisfies the following conditions, then C is an identifying
code of Kn ×Km.

(1) There exist 1 ≤ n1 < n2 < n3 ≤ n and 1 ≤ m1 < m2 < m3 ≤ m such that
(n1,m1), (n2,m2), (n3,m3) ∈ C;

(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or column-
isolated; and

(3) rs(C) = m and cs(C) = n.

Proof. Assume C is as specified. For ease of reference we denote the graph Kn×Km by G through-
out this proof. By the first assumption above it follows immediately that C dominates G since
{(n1,m1), (n2,m2), (n3,m3)} does.

We need only to show that C separates every pair x, y of distinct vertices. First assume that x
and y are in the same column. If x or y belongs to C, then Lemma 8 shows that C separates them.
If neither is in C, then by our assumption that rs(C) = m and cs(C) = n we can choose a vertex
z ∈ C from the same row as x. This vertex z separates x and y. Similarly, C separates any two
vertices belonging to a common row.

Now, assume x = (i, r) and y = (j, s) where 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ m. Any
v = (k, t) ∈ C that is not isolated in C is row-isolated or column-isolated but not both, and it
follows that either |C ∩ Ck| ≥ 2 or |C ∩Rt| ≥ 2.

(a) Suppose x ∈ C but is not isolated in C. As above, either |C ∩ Ci| ≥ 2 or |C ∩ Rr| ≥ 2.
Assume without loss of generality that |C ∩ Ci| ≥ 2. It follows that either (i, s) ∈ C or there
exists 1 ≤ t ≤ m where t 6∈ {r, s} and (i, t) ∈ C. In the first case where we have (i, s) ∈ C,
it follows that (i, s) is row-isolated, and thus y 6∈ C. However, each column of G is in the
column span of C so there exists 1 ≤ p ≤ m where p 6∈ {r, s} and (j, p) ∈ C since (i, r) and
(i, s) are row-isolated. Thus, (j, p) ∈ C ∩ N [x] but (j, p) 6∈ C ∩ N [y]. Hence, C separates x
and y. On the other hand, if there exists 1 ≤ t ≤ m where t 6∈ {r, s} and (i, t) ∈ C, then
(i, t) ∈ C ∩ N [y] but (i, t) 6∈ C ∩ N [x]. Again, this implies that C separates x and y. If we
had instead assumed that |C ∩Rr| ≥ 2, that is we had assumed x is column-isolated and not
row-isolated, then a similar argument shows that C separates x and y.

(b) Suppose x ∈ C and is isolated in C. Since x is both row-isolated and column-isolated,
C = C ∩ N [x]. First assume that y 6∈ C. Since Cj is in the column span of C, there exists
1 ≤ t ≤ m with t 6∈ {r, s} such that (j, t) ∈ C, and (j, t) separates x and y. On the other
hand, if y ∈ C, then either |C ∩Cj| ≥ 2 or |C ∩Rs| ≥ 2 since y is not isolated. In either case,
C ∩N [y] 6= C, and therefore C separates x and y.
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(c) Suppose x, y ∈ V (G) \ C. If we assume that C does not separate x and y, then because each
row of G is in the row span of C and each column of G is in the column span of C, it follows
that

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) = {(i, s), (j, r)} .
Thus, by definition, both (i, s) and (j, r) are isolated in C, contradicting the second assump-
tion. Hence, C separates x and y.

Therefore, C separates every pair of distinct vertices, and thus C is an ID code of Kn ×Km.

Proposition 14. If C ⊆ V (Kn ×Km) satisfies the following conditions, then C is an identifying
code of Kn ×Km.

(1) There exist 1 ≤ n1 < n2 < n3 ≤ n and 1 ≤ m1 < m2 < m3 ≤ m such that
(n1,m1), (n2,m2), (n3,m3) ∈ C;

(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or column-
isolated;

(3) rs(C) = m− 1 and cs(C) = n; and

(4) If Rr has the property that every v ∈ C ∩ Rr is column-isolated but not row-isolated, then
|C ∩Rr| ≥ 3.

Proof. As in the proof of Proposition 13 we see that C dominates G = Kn ×Km.

We show that C separates every pair x, y of distinct vertices in G. Let Rr be the row not
in the row span of C. Notice that G \ Rr

∼= Kn × Km−1 and that C satisfies the hypotheses of
Proposition 13 when considered as a subset of V (G) \Rr. Thus, C separates x, y if neither is in Rr,
and so we may assume that x ∈ Rr, say x = (i, r).

(a) First assume that y = (j, r) with i 6= j. Since cs(C) = n, there exists 1 ≤ s ≤ m such that
r 6= s and (i, s) ∈ C. This vertex (i, s) separates x and y. Next, assume that y = (i, t) for
some 1 ≤ t ≤ m with t 6= r. If y ∈ C, then y separates x and y. However, if y 6∈ C, then since
each row of G other than Rr is in the row span of C, there exists 1 ≤ j ≤ n with i 6= j such
that (j, t) ∈ C. It follows that (j, t) separates x and y.

(b) Next, assume that y = (j, s) where i 6= j and r 6= s. If we assume that C does not separate
x and y, then C does not satisfy the 4-Corners Property with respect to columns Ci, Cj and
rows Rr, Rs. In addition, since Rr is not in the row span of C,

C ∩ (Ci ∪ Cj ∪Rr ∪Rs) ⊆ {(i, s), (j, s)} .

Since both Ci and Cj are in the column span of C, it follows that C ∩ (Ci ∪ Cj ∪Rr ∪Rs) =
{(i, s), (j, s)}. This means that Rs contains exactly two members of C and they are both
column-isolated, contradicting one of the assumptions. Hence, this case cannot occur either,
and it follows that C separates x and y.

Therefore, C is an ID code of Kn ×Km.
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4 Proofs of Main Results

In this section we prove all of our main results. The general strategy will be to construct an ID
code of the claimed optimal size (by employing Propositions 13 and 14) and prove the given direct
product has no smaller ID code.

We treat the smallest case first.

Theorem 1. For any positive integer m ≥ 5, γID(K2 ×Km) = m− 1. In addition, if 3 ≤ m ≤ 4,
γID(K2 ×Km) = m.

Proof. If C is any ID code of K2 ×K3, then by Lemma 7 it follows that rs(C) ≥ 2. No subset of
two elements in different rows dominates K2 ×K3, and so γID(K2 ×K3) ≥ 3. It is easy to check
that {(1, 1), (1, 2), (1, 3)} is an ID code. A similar argument shows that γID(K2 ×K4) = 4.

If m ≥ 5, it follows from Lemma 7 that γID(K2 ×Km) ≥ m − 1, and it is easily checked that
{(1, 1), (1, 2)} ∪ {(2, r) | 3 ≤ r ≤ m− 1} is an ID code.

Now we turn our attention to the case when the first factor has order at least 3 and the second
factor is sufficiently larger than the first.

Theorem 2. For positive integers n and m where n ≥ 3 and m ≥ 2n,

γID(Kn ×Km) = m− 1 .

Proof. Consider the set

D = {(i, 2i− 1), (i, 2i) | i ∈ [n− 1]} ∪ {(n, j) | 2n− 1 ≤ j ≤ m− 1}.

Notice that each v in D is row-isolated but not column-isolated, rs(D) = m − 1 and cs(D) = n.
Furthermore, (1, 1), (2, 3) and (3, 5) are in D. Thus, Proposition 14 guarantees that D is an ID
code, and Lemma 7 gives the desired result.

We now focus on direct products of the form Kn ×Km where 6 ≤ n ≤ m ≤ 2n− 1 and prove that
in all cases

⌊
2m+ 2n

3

⌋
≤ γID(Kn ×Km) ≤

⌈
2m+ 2n

3

⌉
. (1)

For the remainder of this paper, when considering any ID code C of G = Kn ×Km we define

AC = {v ∈ C | v is row-isolated in C}

and
BC = {v ∈ C | v is column-isolated in C} .
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Let |AC | = x, and let p denote the number of columns Ci of G such that |C ∩ Ci| ≥ 2 and
C ∩ Ci ⊆ AC . Similarly, let |BC | = y, and let q represent the number of rows Rr of G such that
|C∩Rr| ≥ 2 and C∩Rr ⊆ BC . Notice that C contains at most one isolated codeword, in which case
|AC ∩BC | = 1. Otherwise, AC ∩BC = ∅. Moreover, we always have |C| ≥ |AC ∪BC | ≥ x+ y − 1.

The approach we take in the proof of Theorem 3, Theorem 5 and Theorem 6 will be to show
that any code of cardinality smaller than the claimed value will violate some consequence of the
4-Corners Property. Which consequence will depend on the particular cardinalities of the row span
and column span.

Theorem 3. If n and m are positive integers such that 6 ≤ n ≤ m ≤ 2n − 1 and n + m ≡ 0
(mod 3) or n+m ≡ 2 (mod 3), then

γID(Kn ×Km) =

⌊
2m+ 2n

3

⌋
.

Proof. Suppose C is an ID code of G = Kn ×Km such that |C| ≤
⌊
2n+2m

3

⌋
− 1. We consider four

cases based on the possible values of cs(C) and rs(C).

Case 1 Suppose cs(C) = n and rs(C) = m.
Since cs(C) = n and |BC | = y, there are n − y columns that each contain at least two
codewords. Thus, |C \ BC | ≥ 2(n − y), which implies 2m+2n

3
− 1 ≥ |C| ≥ 2n − y. It follows

that y ≥ 4n−2m
3

+ 1. Similarly, we get x ≥ 4m−2n
3

+ 1. Together these imply that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n

3
+ 1 .

This is clearly a contradiction, and hence no such C exists with cs(C) = n and rs(C) = m.

Case 2 Suppose cs(C) = n− 1 and rs(C) = m.
Note that since each codeword in BC is column-isolated and cs(C) = n − 1, there exist at
least two codewords in each of the remaining n − 1 − y columns disjoint from the column
span of BC . However, Corollary 11 guarantees that |C ∩ Cj| ≥ 3 for any column Cj for
which |C ∩ Cj| ≥ 2 and C ∩ Cj ⊆ AC . Since p represents the number of such columns,
|C \BC | ≥ 2(n− 1− y − p) + 3p = 2n− 2− 2y + p. Consequently, |C| ≥ 2n− 2− y + p, and
it follows that y ≥ 4n−2m

3
− 1 + p.

Similarly, since |AC | = x and rs(C) = m, |C \ AC | ≥ 2(m− x), which implies |C| ≥ 2m− x.
From Case 1 we see that this gives x ≥ 4m−2n

3
+ 1. Moreover, |C| ≥ x+ y − 1 so that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n

3
+ p− 1 .

Hence, p = 0, and we have equality in the above so that⌊
2m+ 2n

3

⌋
− 1 = |C| = x+ y − 1.
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It follows that C = AC ∪ BC . If there exists v ∈ C \ BC , say v ∈ Ci, then Ci contains
an additional codeword that is also row-isolated. Hence, p is at least 1. However, this
contradicts p = 0 since each codeword is either row-isolated or column-isolated. Consequently,
m = rs(C) ≤ |C| = |BC | ≤ n − 1 ≤ m − 1. This contradiction shows that this case cannot
occur.

Case 3 Suppose cs(C) = n and rs(C) = m− 1.

If we interchange the roles of rows and columns in Case 2, then we are led to q = 0 and⌊
2m+ 2n

3

⌋
− 1 = |C| = x+ y − 1 .

Thus, C = AC ∪BC . On the other hand, since cs(C) = n it follows as in Case 1 that

y ≥ 4n− 2m

3
+ 1 ≥ 4n− 2(2n− 1)

3
+ 1 =

5

3
.

Since y is an integer, we see that C has at least two column-isolated codewords. One of
these, say v, is isolated since |C| = x + y − 1. Let w be a column-isolated codeword with
w 6= v, and assume that w ∈ Rj. Since w is not isolated but is column-isolated, Rj contains
another codeword besides w. All codewords in Rj are therefore in BC , and thus q ≥ 1. This
contradiction shows that this case cannot occur.

Case 4 Suppose that cs(C) = n− 1 and rs(C) = m− 1.
From Case 2 and Case 3, we see that

y ≥ 4n− 2m

3
− 1 + p and x ≥ 4m− 2n

3
− 1 + q .

Since cs(C) = n− 1 and rs(C) = m− 1, it follows from Corollary 12 that C does not contain
an isolated vertex. It follows that

2m+ 2n

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n

3
− 2 + p+ q .

Hence, p+ q ≤ 1.

Suppose p = 1. Consequently, we have equality throughout the above inequality, and thus
C = AC ∪BC . Suppose there exists v ∈ BC , say v ∈ Rr. Since q = 0 and there are no isolated
codewords, it follows that C contains another codeword u in Rr that is not column-isolated.
But u 6∈ AC ∪ BC , which is a contradiction. Therefore, C = AC . Since p = 1 we are led to
conclude that cs(C) = 1, which is another contradiction.

To show that q = 1 is not possible we simply interchange the roles of AC and BC in the above.

Finally, suppose p = 0 = q. Since p = 0, any column that contains a row-isolated codeword
would also have to contain a codeword that is not row-isolated. Since there can exist at most
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one of these to guarantee |C| ≤
⌊
2m+2n

3

⌋
− 1, there is a column Ci such that AC ⊆ Ci, and

for some r, (i, r) ∈ C \ (AC ∪ BC). Similarly, since q = 0, if there exists a row containing
a column-isolated codeword, then that row contains a codeword that is not column-isolated.
Since |C \ (AC ∪ BC)| ≤ 1, such a codeword must be (i, r). This implies that 2m+2n

3
− 1 ≥

|C| ≥ m− 1 + n− 2, and this implies that n+m ≤ 6, contradicting our assumption.

Therefore, every ID code of Kn ×Km has cardinality at least b2m+2n
3
c.

An application of Proposition 13 shows that the following sets are ID codes of cardinality
b2m+2n

3
c and finishes the proof. See Figure 1 for several specific instances of these constructions.

If n+m ≡ 0 (mod 3), let

D1 = {(i, 2i− 1), (i, 2i)|1 ≤ i ≤ a} ∪ {(a+ 2j − 1, 2a+ j), (a+ 2j, 2a+ j)|1 ≤ j ≤ b} ,

where a = 2m−n
3

and b = 2n−m
3

. For n+m ≡ 2 (mod 3) but m 6= 2n−1, let a = 2m−n−1
3

, b = 2n−m−1
3

,
and

D2 = {(i, 2i− 1), (i, 2i)
∣∣1 ≤ i ≤ a} ∪ {(a+ 2j − 1, 2a+ j), (a+ 2j, 2a+ j)

∣∣1 ≤ j ≤ b} ∪ {(n,m)} .

Finally, if m = 2n− 1, let

D3 = {(i, 2i− 1), (i, 2i)|i ∈ [n− 1]} ∪ {(n, 2n− 1)}.

The following figure illustrates ID codes of optimal order for several of the cases of Theorem 3.
The vertices of the direct products in the figure are represented, but the edges are omitted for clarity.
Recall that columns are vertical and rows are horizontal. Solid vertices indicate the members of an
optimal ID code in each case.

(a) K6 ×K6

(b) K6 ×K8

Figure 1: Examples of ID codes when n+m ≡ 0, 2 (mod 3)

For a fixed n ≥ 6, the lone exception to the formula d2m+2n
3
e for γID(Kn×Km) where n ≤ m ≤

2n− 2 and n+m congruent to 1 modulo 3 is the instance m = 2n− 5. We now prove Theorem 5,
which shows the correct value is b2(2n−5)+2n

3
c. We restate it here for convenience.

11



Theorem 4. For a positive integer n ≥ 6,

γID(Kn ×K2n−5) = 2n− 4 .

Proof. Assume there exists an ID code C for Kn ×K2n−5 such that |C| ≤ 2n − 5. Since rs(C) ≥
2n− 6, we consider the following two cases.

Case 1 Suppose that rs(C) = 2n− 6.
Since each codeword in AC is row-isolated and rs(C) = 2n − 6, there exist at least two
codewords in each of the remaining 2n−6−x rows disjoint from the row span of AC . However,
Corollary 11 guarantees that |C∩Rr| ≥ 3 for any rowRr where C∩Rr ⊆ BC . Since q represents
the number of these rows, |C \AC | ≥ 2(2n−6−x−q)+3q, which implies |C| ≥ 4n−12−x+q.
Consequently, 2n− 5 ≥ 4n− 12− x+ q, which implies x ≥ 2n− 7 + q.

Similarly, since cs(C) ≥ n − 1 and each codeword in BC is column-isolated, there are at
least n − 1 − y columns disjoint from the column span of BC that each contain at least two
codewords. Thus, |C \ BC | ≥ 2(n − 1 − y), which implies that |C| ≥ 2n − 2 − y. Therefore,
y ≥ 3. It follows that

2n− 5 ≥ |C| ≥ x+ y − 1 ≥ 2n− 5 + q.

Thus, q = 0. Moreover, we have equality in the above, and therefore C = AC ∪ BC . On
the other hand, y ≥ 3 and only one of these column-isolated codewords can be isolated.
Consequently, q ≥ 1 since each codeword of C is either row-isolated or column-isolated, which
is a contradiction.

Case 2 Suppose rs(C) = 2n− 5.
Using a similar argument as in Case 1, we have |C \ AC | ≥ 2(2n − 5 − x), which implies
|C| ≥ 4n−10−x. This implies 2n−5 ≥ |C| ≥ x ≥ 2n−5. Therefore, it follows that C = AC ,
and thus cs(C) = cs(AC) ≤ 2n−6

2
+ 1 = n− 2, contradicting Lemma 7.

Therefore, no such identifying code C exists with |C| ≤ 2n− 5. It follows that γID(G) ≥ 2n− 4.

An application of Proposition 14 shows that the set

D = {(i, 2i− 1), (i, 2i)
∣∣1 ≤ i ≤ n− 4}∪ {(n− 3, 2n− 7), (n− 2, 2n− 7), (n− 1, 2n− 7), (n, 2n− 6)}

is an ID code of Kn ×K2n−5 of cardinality 2n− 4.

Theorem 5. Let n and m be positive integers such that 6 ≤ n ≤ m ≤ 2n− 2 and m 6= 2n− 5. If
n+m ≡ 1 (mod 3), then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.

Proof. Notice that d2m+2n
3
e = 2m+2n+1

3
. Assume that there exists an ID code C for Kn ×Km such

that |C| ≤ 2n+2m+1
3

− 1. We again consider four cases based on the possible values of cs(C) and
rs(C).

12



Case 1 Suppose cs(C) = n and rs(C) = m.
Using reasoning similar to that in Case 1 of the proof of Theorem 3, we have |C\BC | ≥ 2(n−y).
This implies that |C| ≥ 2n− y, and hence

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ 2n− y .

It follows that y ≥ 4n−2m+2
3

. Similarly, we have that x ≥ 4m−2n+2
3

. On the other hand, we
know |C| ≥ x + y − 1. Consequently, 2m+2n+1

3
− 1 ≥ x + y − 1 ≥ 2m+2n+1

3
, which is clearly a

contradiction.

Case 2 Suppose cs(C) = n− 1 and rs(C) = m.
Since |BC | = y and cs(C) = n−1, there exist at least two codewords in each of the remaining
n − 1 − y columns that are disjoint from the column span of BC . However, Corollary 11
guarantees |C ∩ Cj| ≥ 3 for any such column Cj where C ∩ Cj ⊆ AC . Since p represents the
number of these columns, |C \BC | ≥ 2(n− 1− y − p) + 3p = 2n− 2− 2y + p. As a result it
follows that y ≥ 4n−2m−4

3
+ p.

Similarly, since rs(C) = m and x = |AC | we get |C \ AC | ≥ 2(m − x), which implies |C| ≥
2m− x. As in Case 1 it follows that x ≥ 4m−2n+2

3
. This yields

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ p− 2 .

Thus, p ≤ 1. Assume first that p = 1. This yields equality in the above, and thus C = AC∪BC ,
y = 4n−2m−1

3
and x = 4m−2n+2

3
. Furthermore, C contains an isolated codeword, call it v. Since

p = 1, there exists a column Ci such that AC \ {v} = C ∩Ci. It follows that cs(AC) = 2. On
the other hand, cs(C) = n − 1 so BC \ {v} spans the remaining n − 3 columns. Therefore,
n− 3 = 4n−2m−1

3
− 1, which contradicts the assumption that n ≤ m.

Therefore, we conclude that p = 0. First assume that C contains no isolated codeword. This
implies

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
+ p− 1 .

Since p = 0 we get equality throughout the above, and hence C = AC ∪BC . As in the proof of
Case 2 of Theorem 3 we arrive at a contradiction. Therefore, C contains an isolated codeword,
say v. Because p = 0, any column that contains a row-isolated codeword other than v would
also have to contain a codeword that is not row-isolated. Furthermore, the fact that p = 0,
together with

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ p− 2 ,

implies that there exists at most one such codeword that is neither row-isolated nor column-
isolated. Note that x ≥ 4m−2n+2

3
≥ 5. Therefore, the row-isolated vertices other than v are

contained in precisely one column, say Ci. Hence, AC \ {v} ⊆ C ∩Ci. We let (i, r) denote the
codeword that is neither row-isolated nor column-isolated. This means C = AC ∪BC ∪{(i, r)}
and so y = 4n−2m−4

3
. It follows that cs(AC) = 2. On the other hand, cs(C) = n−1 so BC \{v}

spans the remaining n−3 columns. Therefore, n−3 = 4n−2m−4
3
−1, which implies 2m = n+2,

again contradicting the assumption that n ≤ m.

13



Case 3 Suppose cs(C) = n and rs(C) = m− 1.

Since |AC | = x and rs(C) = m− 1, there exist at least 2 codewords in each of the remaining
m−1−x rows disjoint from the row span of AC . However, Corollary 11 guarantees |C∩Rr| ≥ 3
for any such row Rr where C ∩ Rr ⊆ BC . Since q represents the number of these rows,
|C \ AC | ≥ 2(m − 1 − x − q) + 3q = 2m − 2 − 2x + q. This implies that x ≥ 4m−2n−4

3
+ q.

Similarly, since cs(C) = n and |BC | = y we get |C\BC | ≥ 2(n−y), which implies |C| ≥ 2n−y.
As in Case 1 it follows that y ≥ 4n−2m+2

3
. Consequently,

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ q − 2.

Thus, q ≤ 1. Assume first that q = 1. This gives equality in the above, and thus C = AC∪BC ,
y = 4n−2m+2

3
and x = 4m−2n−1

3
. Furthermore, C contains an isolated codeword, call it v.

Since q = 1, there exists a row Rr such that BC \ {v} = C ∩ Rr. Thus, rs(BC) = 2. On
the other hand, rs(C) = m − 1 so AC \ {v} spans the remaining m − 3 rows. Therefore,
m− 3 = 4m−2n−1

3
− 1, which contradicts the assumption that m 6= 2n− 5.

Therefore, q = 0. First assume C contains no isolated codeword. Consequently, C = AC ∪BC

and since q = 0, it follows that C = AC . Since cs(C) = n and no isolated codeword exists, it
follows that |C| ≥ 2n. Therefore, 2m+2n+1

3
− 1 ≥ 2n, which implies m ≥ 2n + 1. Because of

this contradiction we conclude that C contains an isolated codeword, say v.

Because q = 0, any row that contains a column-isolated codeword other than v would also
have to contain a codeword that is not column-isolated.

Furthermore, the fact that q = 0, together with

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y − 1 ≥ 2m+ 2n+ 1

3
+ q − 2 ,

implies that there exists at most one such codeword that is neither row-isolated nor column-
isolated. Note that y ≥ 4n−2m+2

3
≥ 2. Therefore, the column-isolated vertices other than v are

contained in precisely one row, say Rr, and hence BC \ {v} ⊆ C ∩Rr. We let (i, r) denote the
codeword that is neither row-isolated nor column-isolated. This means C = AC ∪BC ∪{(i, r)}
and so x = 4m−2n−4

3
. It follows that rs(BC) = 2. On the other hand, rs(C) = m − 1 so

AC \ {v} spans the remaining m − 3 rows. Therefore, m − 3 = 4m−2n−4
3

− 1, which implies
m = 2n − 2. However, in this specific case x = 2n − 4 and y = 2. Since AC ∩ BC = {v}, it
follows that

n = cs(C) ≤ |AC \ {v}|
2

+ |BC | =
2n− 4− 1

2
+ 2 = n− 1

2
,

which is a contradiction.

Case 4 Suppose that cs(C) = n− 1 and rs(C) = m− 1.
From Case 2 and Case 3, we see that

y ≥ 4n− 2m− 4

3
+ p and x ≥ 4m− 2n− 4

3
+ q.

14



Since cs(C) = n− 1 and rs(C) = m− 1, it follows from Corollary 12 that C does not contain
an isolated codeword. Thus,

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
− 3 + p+ q.

Hence, p+ q ≤ 2.

(i) Suppose that p = 0. For each column Ci where AC ∩ Ci 6= ∅, there will exist another
codeword in Ci that is not row-isolated. To guarantee that 2m+2n+1

3
−1 ≥ |C|, C contains

at most two such codewords. Therefore, cs(AC) ≤ 2. If cs(AC) = 2, then y = 4n−2m−4
3

,
and it follows that

n− 1 = cs(C) = cs(AC) + cs(BC) = 2 +
4n− 2m− 4

3
.

This contradicts the assumption that m ≥ n, and thus cs(AC) < 2. On the other hand,
x ≥ 4m−2n−4

3
+ q ≥ 8

3
. Hence, C contains precisely one codeword, say v, that is neither

row-isolated nor column-isolated. This implies that cs(AC) = 1, and if we let Ci represent
the column containing these row-isolated vertices, then v ∈ Ci and cs(AC ∪ {v}) = 1.
Since

n− 1 = cs(C) = cs(AC ∪ {v}) + cs(BC) = 1 + cs(BC) ,

we know cs(BC) = n−2. Therefore, y = n−2 since each vertex of BC is column-isolated.
On the other hand, to guarantee 2m+2n+1

3
− 1 ≥ |C|, it is the case that y ≤ 4n−2m−4

3
+ 1.

Consequently, n− 2 ≤ 4n−2m−4
3

+ 1, which again implies that m < n. This contradiction
shows that p 6= 0.

(ii) Suppose that q = 0. For each row Rr where BC ∩ Rr 6= ∅, there will exist another
codeword in Rr that is not column-isolated. Since p 6= 0, C contains at most one such
codeword and it follows that rs(BC) ≤ 1. On the other hand, y ≥ 4n−2m−4

3
+ p ≥ p ≥ 1.

This implies rs(BC) = 1, and C contains precisely one codeword, say v, that is neither
row-isolated nor column-isolated. Since v is in the same row as the vertices of BC ,
rs(BC ∪ {v}) = 1. This implies

m− 1 = rs(C) = rs(AC) + rs(BC ∪ {v}) = rs(AC) + 1 ,

and consequently m − 2 = rs(AC). Therefore, x = m − 2 since each vertex of AC is
row-isolated. On the other hand, since v is not column-isolated and p = 1, it follows that
cs(AC ∪ {v}) = 2. Therefore,

n− 1 = cs(C) = cs(AC ∪ {v}) + cs(BC) = 2 + cs(BC) ,

which implies y = cs(BC) = n− 3. Combining these facts we get

|C| = |AC ∪BC ∪ {v}| = x+ y + 1 = m+ n− 4 .

However, 2m+2n+1
3

− 1 ≥ |C| = m + n − 4, which implies m + n ≤ 10. This contradicts
our assumption that n ≥ 6.
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(iii) Since p = 1 and q = 1, then x ≥ 4m−2n−4
3

+ 1 and y ≥ 4n−2m−4
3

+ 1. It follows that

2m+ 2n+ 1

3
− 1 ≥ |C| ≥ x+ y ≥ 2m+ 2n+ 1

3
− 1.

Thus, C = AC ∪ BC . On the other hand, cs(AC) = 1 since p = 1. Therefore, BC spans
the remaining n − 2 columns since cs(C) = n − 1. Hence, n − 2 = 4n−2m−4

3
+ 1, which

contradicts m ≥ n.

Therefore, every ID code of Kn ×Km has cardinality at least d2m+2n
3
e.

We now present ID codes to show that this lower bound is realized. Figure 2 contains examples
of minimum cardinality ID codes for some cases covered in Theorem 6. As in Figure 1 the code
consists of the solid vertices.

(a) K8 ×K8

(b) K6 ×K10

Figure 2: Several ID codes when n+m ≡ 1 (mod 3),m 6= 2n− 5

If m 6= 2n− 2, let

D1 = {(1, 1)}∪{(i, 2i), (i, 2i+1)
∣∣ 1 ≤ i ≤ a}∪{(a+2j−1, 2a+j+1), (a+2j, 2a+j+1)

∣∣1 ≤ j ≤ b} ,

where a = 2m−n−2
3

and b = 2n−m+1
3

. It is straightforward to check that D1 satisfies the properties
of Proposition 13 and is therefore an ID code of Kn ×Km.
If m = 2n− 2, let

D2 = {(1, 1)} ∪ {(i, 2i), (i, 2i+ 1)
∣∣ 1 ≤ i ≤ n− 2} ∪ {(n− 1, 2n− 2), (n, 2n− 2)} .

Again, one can verify that D2 satisfies all properties of Proposition 13 and is therefore an ID code
of Kn ×K2n−2.

Therefore, if m 6= 2n− 5 but n+m ≡ 1 (mod 3) and 6 ≤ n ≤ m ≤ 2n− 2, then

γID(Kn ×Km) =

⌈
2m+ 2n

3

⌉
.
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