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Abstract

A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that
D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely
many graphs that do not contain a DD2-pair, we show that every graph with minimum
degree at least two has a DD2-pair. We provide a constructive characterization of trees
that have a DD2-pair and show that K3,3 is the only connected graph with minimum
degree at least three for which D ∪D2 necessarily contains all vertices of the graph.
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1 Introduction

In this paper we continue the study of graph theoretic problems in the complement of
a dominating set. Domination and its variations in graphs have been studied by many
authors. A set D of vertices in a graph G = (V,E) is a dominating set if every vertex in
V \ D has a neighbor in D, while D is a total dominating set if every vertex in V has a
neighbor in D. For k a positive integer, D is a k-dominating set if every vertex in V \D
has at least k neighbors in D. The book by Haynes, Hedetmiemi, and Slater [3] surveyed
much of the work that has been done on the subject of domination and its variations.
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Ore [9] observed that any graph without isolated vertices always contains a pair of disjoint
dominating sets. However, Zelinka [12] showed that one cannot guarantee three disjoint
dominating (or total dominating) sets in a graph by simply requiring the minimum degree
of the graph to be large enough. Thus, studying graphs whose vertex sets admit a partition
into two dominating sets is of interest. With that context in mind we now make the
following definition. A dominating pair of a graphG is a pair (D1, D2) of disjoint dominating
sets D1 and D2 in G. In 2008, Hedetniemi, Hedetniemi, Laskar, Markus, and Slater [2]
initiated the study of the disjoint domination number of G which they defined as γγ(G) =
min{|D1|+ |D2|: (D1, D2) is a dominating pair of G}. Recently, there has been much work
on this parameter, including for example in [2, 4, 5, 6].

Henning and Southey [7] showed that the vertex set of every connected graph with min-
imum degree at least two, with the exception of a 5-cycle, can be partitioned into a domi-
nating set and a total dominating set. A DT-pair of a graph G is a pair (D,T ) of disjoint
sets of vertices of G such that D is a dominating set and T is a total dominating set of
G. The parameter γγt(G) = min{|D|+ |T |: (D,T ) is a DT-pair of G}. This parameter has
been studied for example in [6, 8, 10]. In particular, it is shown in [6] that if G is a graph
with minimum degree at least three, then γγt(G) < n, unless G is the Petersen graph.

In this paper, we consider a DD2-pair of a graph G which is a pair (D,D2) of disjoint
sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. In
contrast to Ore’s positive observation that every graph with no isolated vertex contains two
disjoint dominating sets, there are infinitely many graphs with no isolated vertex that do
not contain a DD2-pair. For example, if G is the graph obtained by adding a pendant edge
to each vertex of an arbitrary graph F (such a graph G is the called the corona or 2-corona
of F in the literature), then G has no DD2-pair. We call a graph that has a DD2-pair a
DD2-graph and in this case make the following definition. If G is a DD2-graph, then let
γγ2(G) = min{|D|+ |D2|: (D,D2) is a DD2-pair of G}.

2 Trees with a DD2-pair

As observed earlier, not every graph is a DD2-graph. Our first aim is to provide a con-
structive characterization of DD2-trees. In general, describing and proving the correctness
of constructive characterizations can become quite involved. We will employ the method of
labelings that was introduced by Dorfling et al [1], and has since been used successfully by
a number of authors. For example, see [8, 11].

A labeling of a graph G is a partition S = (SA, SB) of V (G). The label or status of
a vertex v, denoted sta(v), is the letter x ∈ {A,B} such that v ∈ Sx. The key to our
constructive characterization is to find a labeling of the vertices that indicates the role each
vertex plays in the set associated with each of the parameters.

By a labeled-P3, we shall mean a P3 with the central vertex labeled A and the two leaves
labeled B. Let T be the minimum family of labeled trees that contains a labeled-P3 and
can be obtained by repeated application of the four operations O1, O2, O3 and O4 listed
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below, which extend a labeled tree (T, S) by attaching a tree to the vertex v ∈ V (T ). These
four operations O1, O2, O3 and O4 are illustrated in Figure 1.

• Operation O1. Let v be a vertex with sta(v) = A. Add a vertex u and the edge vu,
and let sta(u) = B.

• Operation O2. Let v be a vertex with sta(v) = B. Add a path u1u2 and the edge
vu1. Let sta(u1) = A and sta(u2) = B.

• Operation O3. Let v be a vertex with sta(v) = B. Add a path u1u2u3 and the edge
vu1. Let sta(u1) = sta(u3) = B and sta(u2) = A.

• Operation O4. Let v be a vertex with sta(v) = A. Add a path u1u2u3 and the edge
vu2. Let sta(u1) = sta(u3) = B and sta(u2) = A.

O1: tA tB&%
'$

O2: tB tA tB&%
'$

O3: tB tB tA tB
&%
'$

O4: tA tA tB
tB��

��

HHHH&%
'$

Figure 1: The four operations O1, O2, O3 and O4.

We recall that a rooted tree distinguishes one vertex r called the root. For each vertex
v 6= r of T , the parent of v is the neighbor of v on the unique r–v path, while a child of v
is any other neighbor of v. We let C(v) denote the set of children of v. A vertex of degree
one is called a leaf and its neighbor is called a support vertex. We shall need the following
observation.

Observation 1 If T is a DD2-tree and (D,D2) is a DD2-pair in T , then every leaf belongs
to D2 while every support vertex belongs to D.

As remarked in the introductory section, there are infinitely many trees that do not
contain a DD2-pair as may be seen by taking the corona of an arbitrary tree. We are now
in a position to establish the following constructive characterization of DD2-trees that uses
labelings.

Theorem 2 The DD2-trees are precisely those trees T such that (T, S) ∈ T for some
labeling S.

Proof. Suppose first that T is a tree and (T, S) ∈ T for some labeling S. By construction,
we observe that every vertex of status B is adjacent to a vertex of status A, while every
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vertex of status A is adjacent to at least two vertices of status B. Thus, (SA, SB) is a
DD2-pair in T , and so T is a DD2-tree. This establishes the sufficiency.

To prove the necessity, we proceed by induction on the order n ≥ 3 of a DD2-tree T . If
n = 3, then T = P3 and (T, S) ∈ T , where S is the labeling of a labeled-P3. This establishes
the base case. For the inductive hypothesis, let n ≥ 4 and assume that for every DD2-tree
T ′ of order less than n there exists a labeling S′ such that (T ′, S′) ∈ T .

Let T be a DD2-tree of order n. Let (D,D2) be a DD2-pair in T . We now root the tree
T at a leaf, r, of a longest path (of length diam(T )) in T . Necessarily, r is a leaf. Let u be
a vertex at maximum distance from r. Necessarily, u is a leaf. Let v be the parent of u, let
w be the parent of v. If w 6= r, let x be the parent of w. Since u is at maximum distance
from the root r, every child of v is a leaf. By Observation 1, we observe that C(v) ⊆ D2

and v ∈ D. In particular, u ∈ D2.

Suppose that dT (v) ≥ 3. Then, v has at least dT (v) − 1 ≥ 2 leaf-neighbors in T . Since
n ≥ 4, v has at least three neighbors in T . If dT (v) ≥ 4 or if dT (v) = 3 and w ∈ D2, then we
consider the tree T ′ = T − u. The partition (D,D2 \ {u}) is a DD2-pair in T ′, and so T ′ is
a DD2-tree. Applying the inductive hypothesis to T ′, there exists a labeling S′ = (S′A, S

′
B)

such that (T ′, S′) ∈ T . By Observation 1, v ∈ S′A. Thus, we can restore the tree T by
applying Operation O1 to T ′. Therefore, (T, S) ∈ T , where S is the labeling (S′A, S

′
B∪{u}).

Hence we may assume that dT (v) = 3 and w ∈ D. Let C(v) = {u, u′}.

We now consider the tree T ′ = T − {u, u′, v}. The partition (D \ {v}, D2 \ {u, u′}) is a
DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive hypothesis to T ′, there
exists a labeling S′ = (S′A, S

′
B) such that (T ′, S′) ∈ T . If w ∈ S′A, then we can restore the

tree T by applying Operation O4 to T ′. If w ∈ S′B, then we can restore the tree T by first
applying Operation O2 to T ′ and then Operation O1. Therefore, (T, S) ∈ T , where S is
the labeling (S′A ∪ {v}, S′B ∪ {u, u′}).

Hence if dT (v) ≥ 3, then (T, S) ∈ T for some labeling S. Hence we may assume that
dT (v) = 2, for otherwise the desired result follow. By Observation 1, the vertex w ∈ D2.

Suppose that dT (w) ≥ 3. Let v′ ∈ C(w) \ {v}. If v′ is a leaf, then by Observation 1,
v′ ∈ D2. But then v′ is not dominated by D, a contradiction. Hence, dT (v′) ≥ 2. By our
choice of the vertex u, every child of v′ is a leaf. As shown in Claim A, we may assume
that dT (v′) = 2. Let u′ be the child of v′. Then, u′ is a leaf. By Observation 1, u′ ∈ D2

and v′ ∈ D. We now consider the tree T ′ = T −{u′, v′}. The partition (D \ {v′}, D2 \ {u′})
is a DD2-pair in T ′, and so T ′ is a DD2-tree. We remark that since T ′ contains the three
vertices u, v and w, we have n(T ′) ≥ 3. Applying the inductive hypothesis to T ′, there
exists a labeling S′ = (S′A, S

′
B) such that (T ′, S′) ∈ T . Necessarily, w ∈ S′B, and we can

therefore restore the tree T by applying Operation O2 to T ′. Therefore, (T, S) ∈ T , where
S is the labeling (S′A ∪ {v′}, S′B ∪ {u′}). Hence if dT (w) ≥ 3, then (T, S) ∈ T for some
labeling S. Hence we may assume that dT (w) = 2, for otherwise the desired result follow.

Suppose that x ∈ D. We now consider the tree T ′ = T − {u, v}. The partition (D \
{v}, D2 \ {u}) is a DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive
hypothesis to T ′, there exists a labeling S′ = (S′A, S

′
B) such that (T ′, S′) ∈ T . Since w is
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a leaf of T ′, we have that w ∈ S′B, and we can therefore restore the tree T by applying
Operation O2 to T ′. Therefore, (T, S) ∈ T , where S is the labeling (S′A ∪ {v}, S′B ∪ {u}).
Hence we may assume that x /∈ D. If x /∈ D2, we simply add x to D2. Hence we may
assume that x ∈ D2.

We now consider the tree T ′ = T − {u, v, w}. The partition (D \ {v}, D2 \ {u,w}) is a
DD2-pair in T ′, and so T ′ is a DD2-tree. Applying the inductive hypothesis to T ′, there
exists a labeling S′ = (S′A, S

′
B) such that (T ′, S′) ∈ T . If x ∈ S′A, we can restore the tree

T by first applying Operation O1 to T ′ and then Operation O2. If x ∈ S′B, we can restore
the tree T by applying Operation O3 to T ′. Therefore, (T, S) ∈ T , where S is the labeling
(S′A ∪ {v}, S′B ∪ {u,w}). 2

By Theorem 2, if T is a DD2-tree, then (T, S) ∈ T for some labeling S. However we
remark that such a labeling is not necessarily unique. Perhaps the simplest example is to
take T = P9 and note that T can be obtained from a labeled-P3 by applying operation O2

three times or T can be obtained from a labeled-P3 by applying operation O3 twice.

3 Minimum degree at least two

Although not every graph is a DD2-graph, if we restrict the minimum degree to at least
two, then γγ2(G) is well defined as the following result shows.

Theorem 3 If G is a graph with minimum degree at least two, then G is a DD2-graph.

Proof. Let G = (V,E) be a graph with minimum degree at least two. Let D be a maximal
independent set in G. Then, D is a dominating set, while V \D is a 2-dominating set in
G. Thus, (D,V \D) is a DD2-pair in G. 2

By Theorem 3, γγ2(G) is well defined, implying that γγ2(G) ≤ |V (G)|. Next we study
graphs G satisfying γγ2(G) = |V (G)|. A characterization of such graphs seems difficult to
obtain since there are several families each containing infinitely many graphs that satisfy
this equation. For example, take any graph or multigraph with minimum degree at least 3
and subdivide every edge at least once.

A second infinite class of examples can be constructed in the following way. Let G be
obtained from an arbitrary graph F as follows: For each vertex v of F , add a path v1v2v3v4v5
and join v to v1, v3 and v5. Finally subdivide every edge of the original graph F at least
once. Each such graph G satisfies γγ2(G) = |V (G)|. An example of such a graph G is
illustrated in Figure 2, where here the original graph F is a path P3 and every edge of F is
subdivided four times.

Surprisingly, when we increase the degree condition from two to three, then there is only
one graph G with γγ2(G) = |V (G)|.
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Figure 2: A graph G satisfying γγ2(G) = |V (G)|.

Theorem 4 Let G be a connected graph with δ(G) ≥ 3. Then, γγ2(G) = |V (G)| if and
only if G = K3,3.

Proof. Let G = (V,E) be a connected graph of order n. If G = K3,3, then it is straightfor-
ward to verify that γγ2(G) = n. Suppose, then, that γγ2(G) = n. We show that necessarily
G = K3,3. Let (A,B) be a partition of V into two sets with the maximum number of
edges between the two sets. Then each vertex v ∈ V has at least dG(v)/2 neighbors in the
other set, since otherwise the vertex v can be moved to the other set. Thus each vertex
has at least as many neighbors in the other set than in its own set. (We remark that this
well-known fact is attributed to Lovász or Erdös.) Since G has minimum degree at least
three, this implies that both A and B are 2-dominating sets in G.

If G is not a bipartite graph, then at least one of the sets A and B is not independent
in G. We may assume that v ∈ A is adjacent to at least one other vertex in A. But then
(A \ {v}, B) is a DD2-pair, and so γγ2(G) ≤ |A|+ |B| − 1 = n− 1, a contradiction. Hence,
G is bipartite with partite sets A and B. In particular, we note that each of A and B is a
3-dominating set.

Let v ∈ A and let Nv = {v1, v2, v3} be a set of three neighbors of v. Then, Nv ⊆ B.
Let A′ = (A \ {v}) ∪ {v1, v2} and let B′ = (B \ Nv) ∪ {v}. Then, |A′| = |A| + 1 and
|B′| = |B| − 2, and so |A′|+ |B′| = n− 1. By construction the set A′ is a 2-dominating set
of G. If B′ is a dominating set of G, then γγ2(G) ≤ |A′| + |B′| = n − 1, a contradiction.
Hence, B′ is not a dominating set. Thus there must exist a vertex v′ ∈ A \ {v} such that
N(v′) = Nv. In particular, dG(v′) = 3. This is true for every vertex v of A. Therefore for
every vertex v ∈ A, there exists a vertex v′ ∈ A \ {v} with dG(v′) = 3 such that v and v′

have three common neighbors in B. Analogously, for every vertex v ∈ B, there exists a
vertex v′ ∈ B \ {v} with dG(v′) = 3 such that v and v′ have three common neighbors in B.
In particular, we note that each of A and B has a vertex of degree 3 in G. Choosing the
vertex v ∈ A to have degree exactly three in G, there therefore exists a vertex v′ ∈ A such
that N(v) = N(v′) = Nv, where Nv = {v1, v2, v3}.

We now consider the vertex v1 and let u ∈ N(v1) \ {v, v′}. Then there is a vertex
w ∈ B \{v1} such that N(w) = {v, v′, u}. Renaming v2 and v3, if necessary, we may assume
that w = v2. There is therefore a vertex z ∈ B \{v2} such that N(z) = {v, v′, u}. Renaming
v1 and v3, if necessary, we may assume that z = v1. Thus, N(v1) = N(v2) = {v, v′, u} and
N(v) = N(v′) = {v1, v2, v3}.

We now consider the set A∗ = (A \ {v, v′}) ∪ {v3} and B∗ = (B \ {v2, v3}) ∪ {v, v′}.
Then, |A∗| = |A| − 1 and |B∗| = |B|, and so |A1| + |B1| = n − 1. Since G is bipartite
with partite sets A and B, and since δ(G) ≥ 3, each vertex in B \ {v3} is adjacent to
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at least one vertex of A \ {v, v′} ⊂ A∗. Further both v and v′ are adjacent to v3 ∈ A∗.
Hence every vertex not in A∗ is adjacent to at least one vertex of A∗, implying that A∗ is a
dominating set. If u is not adjacent to v3 or if d(u) ≥ 4, then B∗ is a 2-dominating set and
γγ2(G) ≤ |A∗|+ |B∗| = n− 1, a contradiction. Hence, u is adjacent only to v1, v2, and v3.
Analogously, v3 is adjacent only to u, v and v′. Hence since G is connected, G = K3,3. 2
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[5] M. A. Henning, C. Löwenstein, and D. Rautenbach, An independent dominating set in
the complement of a minimum dominating set of a tree. Appl. Math. Lett. 23 (2010),
79–81.
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