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Abstract

In this note we characterize the pairs of graphs G and H, for which γ(G�H)
equals min{|V (G)|, |V (H)|}. Notably, assuming that |V (G)| ≤ |V (H)|, G can
be an arbitrary graph, and H is a join L ⊕ F , where L is any spanning su-
pergraph of the graph L(G : A1, . . . , A`), which is determined by a partition
(A1, . . . , A`) of V (G) and F is any graph such that |V (F )| ≥ |V (G)| − `. Fur-
thermore we give some sufficient and some necessary conditions for pairs of
graphs G and H to satisfy γ(G�H) = min{γ(G)|V (H)|, |V (G)|γ(H)}.
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1 Introduction

V.G. Vizing [9] conjectured that the domination number of the Cartesian product of
two graphs is at least the product of their domination numbers; that is, γ(G�H) ≥
γ(G)γ(H). While the conjecture is still open after almost 50 years, numerous attempts
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to prove it initiated the study of related problems in Cartesian products of graphs,
which also yielded several partial results that support the truth of the conjecture; see
the recent survey [1].

It is easy to prove the following upper and lower bounds for the domination number
of such a Cartesian product; see [3] and [8]:

min{|V (G)|, |V (H)|} ≤ γ(G�H) ≤ min{γ(G)|V (H)|, |V (G)|γ(H)}. (1)

Any pair of complete graphs or any graph G and its complement H show the lower
bound is sharp. If at least one of G or H is the complement of a complete graph,
then the upper bound is attained. The motivation for the current work is an attempt
to characterize pairs G and H that demonstrate the sharpness of the bounds in (1).

In the next section we present the main definitions and notation used in the paper.
In particular, we introduce the so-called box dominating sets and stairway dominating
sets, which appear as minimum dominating sets when the upper and the lower bounds
in (1) are realized, respectively. Section 3 contains the main result, which is a charac-
terization of the pairs of graphs G and H for which γ(G�H) = min{|V (G)|, |V (H)|}.
In Section 4 we present a sufficient and a necessary condition for graphs G and H
to achieve the upper bound in (1). The former condition involves the concept of
k-rainbow domination from [2].

2 Definitions and Preliminaries

All graphs considered here will be finite, simple graphs. We follow the notation
of [5]. In particular, the open neighborhood of a vertex x in a graph G is the set
N(x) = {u ∈ V (G) |xu ∈ E(G)} and its closed neighborhood is the set N [x] =
N(x) ∪ {x}. The open (respectively, closed) neighborhood of a subset S of V (G) is
the set N(S) = ∪u∈SN(u) (respectively, N [S] = N(S) ∪ S). Recall that the degree
of a vertex x ∈ V (G) is defined as deg(x) = |N(x)|, and ∆(G) = maxv∈V (G) deg(v).

A dominating set of a graph G is a subset S ⊆ V (G) such that each vertex in G is
either in S or is adjacent to a vertex in S. This condition is equivalent to requiring
x ∈ N [S] for every vertex x of G. We also say that S dominates G. More generally,
given two sets A,B ⊂ V (G) we will say that A dominates B if for any vertex y ∈ B
there exists a vertex x ∈ A such that y ∈ N [x]. The domination number of a graph G
is the minimum cardinality of a dominating set of G. This number is denoted γ(G),
and any dominating set with this cardinality is called a minimum dominating set of
G.

Given a dominating set D ⊆ V (G) of a graph G, we can speak about private
neighbors of a vertex x ∈ D with respect to D; they are the vertices in G that are
dominated only by x among vertices from D. If x is not adjacent to any vertex of D
then we say that x is its own private neighbor. We also speak about external private
neighbors of x with respect to D, and the corresponding external private neighborhood
is defined as Epn(x,D) = {y |N(y) ∩D = {x} ∧ y /∈ D}.
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The Cartesian product of two graphs G and H is the graph G�H, whose vertex
set is the (set) Cartesian product V (G)×V (H). Two vertices (g1, h1) and (g2, h2) are
adjacent in G�H if either g1 = g2 and h1h2 ∈ E(H), or g1g2 ∈ E(G) and h1 = h2.
The graphs G and H are called the factors of G�H. For a fixed h ∈ V (H) the
subgraph of G�H induced by {(g, h) | g ∈ V (G)} is isomorphic to G. This subgraph
is called the G-fiber through h and is denoted G h. In an entirely similar way the
H-fiber through g, for a fixed g ∈ V (G), is the subgraph gH induced by {(g, h) |h ∈
V (H)}. The projection onto G from G�H is the map pG : V (G�H) → V (G)
defined by pG(g, h) = g, and the projection onto H is defined by pH(g, h) = h. The
join of G and H is the graph G⊕H constructed from the disjoint union of G and H
by adding the set of edges {gh | g ∈ V (G) and h ∈ V (H)}. It will be convenient to
allow one of the graphs, say H, to be empty, in which case G⊕H = G.

A subset B of V (G�H) is called a box in the Cartesian product G�H if B =
X × Y where X ⊆ V (G) and Y ⊆ V (H). It follows directly from the definition that
B ⊆ V (G�H) is a box in G�H if and only if B = pG(B)× pH(B). If a minimum
dominating set D of G�H is a box in G�H, we call D a box dominating set or a
BDS for short. Fig. 1 presents the Cartesian product of graphs G and H (note that
edges in the product are omitted for clarity). Note that black vertices mark a BDS
of this product graph, i.e. there exists no dominating set of G�H with less than 10
vertices.

a b
G

H

Figure 1: Box dominating set

A set S ⊂ V (G�H) is called a stairway in the Cartesian product G�H if |S ∩
V (G h)| = 1 for every h ∈ V (H), or |S ∩ V (gH)| = 1 for every g ∈ V (G). (Observe
that by choosing an appropriate order in which vertices of G are drawn, a picture of
such a set S indeed resembles a stairway.) If a minimum dominating set D of G�H
is a stairway in G�H, then we call D a stairway dominating set or an SDS for short.
Fig. 2 presents two examples of Cartesian products with a stairway dominating set.
Note that the second factor in the figure on the right-hand side is the join of two
graphs.
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Figure 2: Stairway dominating set

In general, if D1 and D2 are dominating sets of G and H, respectively, then D1×D2

need not be a dominating set of G�H. In fact, the following propositions give
necessary conditions for any dominating set of a Cartesian product.

Proposition 1 If D is any dominating set of G�H, then pG(D) dominates G and
pH(D) dominates H.

Proof. Let D be a dominating set of G�H and let g be any vertex of G. Every
vertex of the H-fiber gH is in N [D], and therefore g ∈ pG(D) or g ∈ N(pG(D)).
Hence, pG(D) dominates G. Similarly, every G-fiber is dominated by D, and thus
pH(D) dominates H.

Indeed, a stronger condition holds. The image of a dominating set in a Cartesian
product under at least one of the projection maps is “large.”

Proposition 2 If D is any dominating set of G�H, then pG(D) = V (G) or pH(D) =
V (H).

Proof. Let D be any subset of V (G�H). If there exists g ∈ V (G) \ pG(D) and
h ∈ V (H) \ pH(D), then (g, h) 6∈ N [D]. Consequently, D is not a dominating set of
G�H.

An immediate consequence of Proposition 2 is that

γ(G�H) ≥ min{|V (G)|, |V (H)|} .
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3 The Lower Bound

In this section we give a complete characterization of those pairs of graphs G and H
that achieve the lower bound in (1), which is the same as to say that G�H contains
a stairway dominating set. We need yet one more definition.

For any partition (A1, . . . , A`) of V (G), we denote by L(G : A1, . . . , A`) the graph
that has vertex set {A1, . . . , A`} and edge set {AiAj | Ai 6⊆ N(Aj) or Aj 6⊆ N(Ai)}.

Theorem 3 Let G and H be arbitrary graphs such that |V (G)| ≤ |V (H)|. The
product G�H has a stairway dominating set of cardinality |V (G)| if and only if H is
a join L⊕F , where L is any spanning supergraph of L(G : A1, . . . , A`) determined by
a partition (A1, . . . , A`) of V (G) and F is any graph such that |V (F )| ≥ |V (G)| − `.

Proof. To simplify the notation we will assume that the order of G is n and the
order of H is n+ k for some nonnegative integer k. Assume first that γ(G�H) = n.
Let D be a minimum dominating set of G�H. By Proposition 2, we may assume
that pG(D) = V (G). Indeed, if k > 0, then this must be the case. On the other hand,
if k = 0, then the two possibilities are symmetric.

Now, denote pH(D) = L = {a1 . . . , a`}, and choose the notation of vertices of G as
x11, . . . , x

1
s1
, . . . , x`1, . . . , x

`
s`

such that

D =
⋃̀
i=1

({xi1, . . . , xisi} × {ai}).

(Notation is as in Fig. 2.) Clearly,
∑`

i=1 si = n, and in each H-fiber xi
kH there is

exactly one vertex in D, namely (xik, ai). (This yields that D is an SDS of G�H.)
By letting F be the graph induced by V (H) \ V (L), we immediately derive that
|V (F )| = |V (H)| − |V (L)| ≥ |V (G)| − |V (L)|, and no other condition is imposed on
F . Since for arbitrary ai ∈ V (L) and u ∈ F , vertices (xi1, ai) and (xi1, u) must be
adjacent, it follows that ai and u are adjacent in H, hence H is the join of L and F .

Consider the partition of V (G) by the sets Ai = {xi1, . . . , xisi} for all i ∈ {1, . . . , `}.
Suppose that Ai does not dominate Aj. (The case when Aj does not dominate Ai is
symmetric.) Hence there exists xjk ∈ Aj, which is not adjacent to any xit ∈ Ai. This
implies that inG�H, the vertex (xjk, ai) is not adjacent to any of the vertices (xit, ai) ∈
D, hence it is not dominated within the G-fiber G ai . Since D is a dominating set of
the Cartesian product G�H, it must be the case that (xjk, ai) is dominated within
the H-fiber, in which there is only one vertex from D, namely (xjk, aj). Hence ai and
aj are adjacent in L. This observation completes the proof of this direction, because
we have shown that L is isomorphic to a spanning supergraph of L(G : A1, . . . , A`)
determined by the partition (A1, . . . , A`).

For the converse it suffices to observe that⋃̀
i=1

(Ai × {ai})
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is a dominating set of G�H of cardinality n.

Remark 1 In the case when ` = |V (G)|, each Ai contains exactly one vertex of G,
say xi, and the condition that one of Ai, Aj does not dominate the other coincides
with the condition that xi and xj are not adjacent. In this case, it follows that L is
isomorphic to a supergraph of the complement, G, of G.

Although stairway dominating sets are of the smallest possible cardinality among
minimum dominating sets of Cartesian products of pairs of graphs with given orders,
Cartesian products enjoying such a dominating set satisfy the inequality in Vizing’s
conjecture. Indeed, if F 6= ∅ then H is the join L⊕F of two graphs, and so γ(H) ≤ 2.
It is well-known that such graphs satisfy the conjecture [1]. On the other hand, if
F = ∅, H is a supergraph of G. In this case, by the result from [6, 7], γ(G)γ(G) ≤
|V (G)|, hence

γ(G)γ(H) ≤ γ(G)γ(G) ≤ |V (G)| = γ(G�H).

4 The Upper Bound

In this section we present two results in relation with the upper bound in (1). The
first one is a sufficient condition for a Cartesian product of graphs not to have a BDS,
while the second one is a sufficient condition for a product to have a BDS.

Lemma 4 If G�H has a box dominating set D, then pH(D) is a minimum domi-
nating set of H or pG(D) is a minimum dominating set of G.

Proof. Assume that D is a BDS of G�H. By Proposition 2 we may assume
without loss of generality that pG(D) = V (G). By Proposition 1 it follows that pH(D)
dominates H. Let S be any dominating set of H. Clearly, V (G)×S dominates G�H.
Since D is a BDS of G�H,

|V (G)||S| ≥ γ(G�H) = |D| = |pG(D)× pH(D)| = |V (G)||pH(D)| .

Consequently, |pH(D)| ≤ |S|, and it follows that pH(D) is a minimum dominating set
of H.

Proposition 5 Let G and H be graphs such that γ(G)|V (H)| ≥ γ(H)|V (G)|. If H
has a minimum dominating set DH with a vertex v ∈ DH such that |Epn(v,DH)| <
∆(G), then G2H has no box dominating set.

Proof. Assume that G and H are as described in the statement of the theorem, but
for the sake of contradiction assume that G�H has a BDS D. Since γ(G)|V (H)| ≥
γ(H)|V (G)| we may also assume that pG(D) = V (G). Since D is a BDS it follows that
D = pG(D)× pH(D) = V (G)× pH(D). Lemma 4 implies that pH(D) is a minimum
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dominating set of H, and hence |pH(D)| = |DH |. It follows that V (G) ×DH is also
a minimum dominating set of G�H.

We may assume that Epn(v,DH) 6= ∅, since V (G)×DH is a minimum dominating
set of G2H. Indeed, if Epn(v,DH) = ∅, then (V (G)×DH)\{(u, v)} dominates G2H
for any u ∈ V (G) that is not isolated in G (such u exists because of the condition
0 ≤ |Epn(v,DH)| < ∆(G)).

Note that for any a ∈ V (G) the external private neighborhood of the vertex (a, v)
with respect to the dominating set V (G)×DH in G�H is {a}×Epn(v,DH). In other
words, all vertices in the H-fiber aH, except for the vertices from {a} × Epn(v,DH)
and possibly also (a, v), are already dominated by {a} × (DH \ {v}). Let x ∈ V (G)
be a vertex with deg(x) = ∆(G). Note that the set N(x) × Epn(v,DH) can also be
dominated in G�H by the set {x} × Epn(v,DH), and

|{x} × Epn(v,DH)| = |Epn(v,DH)| < ∆(G) = |N(x)× {v}|.

Hence the set D′ = ((V (G)×DH)\(N(x)×{v}))∪({x}×Epn(v,DH)) is a dominating
set of G�H with |D′| < |V (G) × DH | = |D| (note that in D′ the vertices from
N(x)×{v} are dominated by the vertex (x, v) ∈ D′). This is a contradiction with D
being a minimum dominating set, which completes the proof.

The conditions on G and H in Proposition 5 are not necessary for the Cartesian
product G�H not to have a BDS. This can be seen by letting G = K2 and H = C5.
For this pair of graphs γ(G)|V (H)| ≥ γ(H)|V (G)|. Yet, for every minimum dominat-
ing set D of H and any x ∈ D, |Epn(v,D)| = 1 = ∆(G). However, γ(C5�K2) = 3,
and consequently G�H does not have a BDS.

For the sufficient condition in the other direction we need the notion of rainbow
domination, as introduced in [2]. Let G be a graph and let f be a function that assigns
to each vertex a set of colors chosen from the set {1, . . . , k}; that is, f : V (G) →
P({1, . . . , k}). If for each vertex v ∈ V (G) such that f(v) = ∅, we have⋃

u∈N(v)

f(u) = {1, . . . , k},

then f is called a k-rainbow dominating function (kRDF) of G. The weight, w(f),
of a function f is defined as w(f) =

∑
v∈V (G) |f(v)|. Given a graph G, the minimum

weight of a kRDF is called the k-rainbow domination number of G, which we denote
by γrk(G). (The 1-rainbow domination number of G is just the domination number
of G.)

Rainbow domination in a graph G has a natural connection with the study of
γ(G�Kk). It is easy to verify that for k ≥ 1 and for any graph G,

γrk(G) = γ(G�Kk).
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In particular, for any graph G for which γrk(G) = kγ(G) it follows that γ(G�Kk) =
kγ(G), and so G�Kk has a box dominating set. In the next proposition we will show
even more.

Proposition 6 Let G be a graph such that γrk(G) = kγ(G), for some k ≥ 2. If H is
any graph of order k, then γ(G�H) = kγ(G) and G�H has a box dominating set.

Proof. Since H is a spanning subgraph of Kk, G�H is a spanning subgraph of
G�Kk. Clearly γ(G�H) ≥ γ(G�Kk), and as above we note that γ(G�Kk) =
kγ(G). Altogether, using (1), we have γ(G�H) = γ(G)|V (H)|, which implies that
G�H has a box dominating set.

To see that the converse of Proposition 6 does not hold, consider the graph G in
Figure 3. Let f : V (G) → P({1, . . . , 4}) be defined by f(a1) = {1}, f(a2) = {2},
f(a3) = {3}, f(b1) = {1}, f(b2) = {1}, f(b3) = {1}, f(b) = {4}, and f(a) = ∅.
Clearly, f is a 4-rainbow dominating function, and thus γr4(G) ≤ 7 < 4γ(G). Now,
let H = P4 with vertex set {u, v, w, x} where v is of degree 2 with neighbors u of
degree 1 and w of degree 2. It is straightforward to verify that γ(G�H) = 8 and
{a, b} × V (H) is a BDS.

a1

a2

a3

b1

b2

b3

a b

G

Figure 3: A graph G with γr4(G) < 4γ(G)
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[2] B. Brešar, M. A. Henning, and D. F. Rall, Rainbow domination in graphs, Tai-
wanese J. Math. 12 (2008) 213–225.

[3] M. El-Zahar, and C. M. Pareek, Domination number of products of graphs, Ars
Combin. 31 (1991) 223–227.

8



[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, New York, 1998.
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[9] V. G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23
(6(144)) (1968) 117–134.

9


