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Green’s Theorem

Green’s theorem is an example from a family of theorems which connect line integrals (and
their higher-dimensional analogues) with the definite integrals we studied in Section 3.6.
We will first look at Green’s theorem for rectangles, and then generalize to more complex
curves and regions in R2.

Green’s theorem for rectangles

Suppose F : R2 → R2 is C1 on an open set containing the closed rectangle

D = [a, b]× [c, d],

and let F1 and F2 be the coordinate functions of F . If C denotes the boundary of D,
oriented in the clockwise direction, then we may decompose C into the four curves C1, C2,
C3, and C4 shown in Figure 4.4.1. Then
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Figure 4.4.1 The boundary of a rectangle decomposed into four smooth curves

α(t) = (t, c),

a ≤ t ≤ b, is a smooth parametrization of C1,

β(t) = (b, t),
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c ≤ t ≤ d, is a smooth parametrization of C2,

γ(t) = (t, d),

a ≤ t ≤ b, is a smooth parametrization of −C3, and

δ(t) = (a, t),

c ≤ t ≤ d, is a smooth parametrization of −C4. Now∫
C

F · ds =
∫

C1

F · ds +
∫

C2

F · ds +
∫

C3

F · ds +
∫

C4

F · ds

=
∫

C1

F · ds +
∫

C2

F · ds−
∫
−C3

F · ds−
∫
−C4

F · ds, (4.4.1)

and ∫
C1

F · ds =
∫ b

a

((F1(t, c), F2(t, c)) · (1, 0)dt =
∫ b

a

F1(t, c)dt, (4.4.2)

∫
C2

F · ds =
∫ d

c

((F1(b, t), F2(b, t)) · (0, 1)dt =
∫ c

c

F2(b, t)dt, (4.4.3)

∫
−C3

F · ds =
∫ b

a

((F1(t, d), F2(t, d)) · (1, 0)dt =
∫ b

a

F1(t, d)dt, (4.4.4)

and ∫
−C4

F · ds =
∫ d

c

((F1(a, t), F2(a, t)) · (0, 1)dt =
∫ c

c

F2(a, t)dt, (4.4.5)

Hence, inserting (4.4.2) through (4.4.5) into (4.4.1),

∫
C

F · ds =
∫ b

a

F1(t, c)dt +
∫ d

c

F2(b, t)dt−
∫ b

a

F1(t, d)dt−
∫ d

c

F2(a, t)dt

=
∫ d

c

(F2(b, t)− F2(a, t))dt−
∫ b

a

(F1(t, d)− F1(t, c))dt. (4.4.6)

Now, by the Fundamental Theorem of Calculus, for a fixed value of t,∫ b

a

∂

∂x
F2(x, t)dx = F2(b, t)− F2(a, t) (4.4.7)

and ∫ d

c

∂

∂y
F1(t, y)dy = F1(t, d)− F1(t, c). (4.4.8)
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Thus, combining (4.4.7) and (4.4.8) with (4.4.6), we have∫
C

F · ds =
∫ d

c

∫ b

a

∂

∂x
F2(x, t)dxdt−

∫ b

a

∫ d

c

∂

∂y
F1(t, y)dydt

=
∫ d

c

∫ b

a

∂

∂x
F2(x, y)dxdy −

∫ b

a

∫ d

c

∂

∂y
F1(x, y)dydx

=
∫ d

c

∫ b

a

(
∂

∂x
F2(x, y)− ∂

∂y
F1(x, y)

)
dxdy. (4.4.9)

If we let p = F1(x, y), q = F2(x, y), and ∂D = C (a common notation for the boundary of
D), then we may rewrite (4.4.9) as∫

∂D

pdx + qdy =
∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.10)

This is Green’s theorem for a rectangle.

Example If D = [1, 3]× [2, 5], then∫
∂D

xydx + xdy =
∫ ∫

D

(
∂

∂x
x− ∂

∂y
xy

)
dxdy

=
∫ 3

1

∫ 5

2

(1− x)dydx

=
∫ 3

1

3(1− x)dx

= 3x
∣∣3
1
− 3

2
x2

∣∣∣3
1

= −6.

Clearly, this is simpler than evaluating the line integral directly.

Green’s theorem for regions of Type III
Green’s theorem holds for more general regions than rectangles. We will confine ourselves
here to discussing regions known as regions of Type III, but it is not hard to generalize to
regions which may be subdivided into regions of this type (for an example, see Problem
12). Recall from Section 3.6 that we say a region D in R2 is of Type I if there exist real
numbers a < b and continuous functions α : R → R and β : R → R such that

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (4.4.11)

We say a region D in R2 is of Type II if there exist real numbers c and d and continuous
functions γ : R → R and δ : R → R such that

D = {(x, y) : c ≤ y ≤ d, γ(y) ≤ x ≤ δ(y)}. (4.4.12)
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Figure 4.4.2 Decomposing the boundary of a region of Type I

Definition We call a region D in R2 which is both of Type I and of Type II a region of
Type III.

Example In Section 3.6, we saw that the triangle T with vertices at (0, 0), (1, 0), and
(1, 1) and the closed disk

D = B̄2((0, 0), 1) = {(x, y) : x2 + y2 ≤ 1}

are of both Type I and Type II. Thus T and D are regions of Type III. We also saw that
the region E beneath the graph of y = x2 and above the interval [−1, 1] is of Type I, but
not of Type II. Hence E is not of Type III.

Example Any closed rectangle in R2 is a region of Type III, as is any closed region
bounded by an ellipse.

Now suppose D is a region of Type III and ∂D is the boundary of D, that is, the
curve enclosing D, oriented counterclockwise. Let F : R2 → R2 be a C1 vector field, with
coordinate functions p = F1(x, y) and q = F2(x, y). We will first prove that∫

∂D

pdx = −
∫ ∫

D

∂p

∂y
dxdy. (4.4.13)

Since D is, in particular, a region of Type I, there exist continuous functions α and β such
that

D = {(x, y) : a ≤ x ≤ b, α(x) ≤ y ≤ β(x)}. (4.4.14)

In addition, we will assume that α and β are both differentiable (without this assumption
the line integral of F along ∂D would not be defined). As with the rectangle in the previous
proof, we may decompose ∂D into four curves, C1, C2, C3, and C4, as shown in Figure
4.4.2. Then

ϕ1(t) = (t, α(t)),
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a ≤ t ≤ b, is a smooth parametrization of C1,

ϕ2(t) = (b, t),

α(b) ≤ t ≤ β(b), is a smooth parametrization of C2,

ϕ3(t) = (t, β(t)),

a ≤ t ≤ b, is a smooth parametrization of −C3, and

ϕ4(t) = (a, t),

α(a) ≤ t ≤ β(a), is a smooth parametrization of −C4. Now∫
∂D

pdx =
∫

C1

pdx +
∫

C2

pdx−
∫
−C3

pdx−
∫
−C4

pdx, (4.4.15)

where ∫
C1

pdx =
∫ b

a

(F1(t, α(t)), 0) · (1, α′(t))dt =
∫ b

a

F1(t, α(t))dt, (4.4.16)∫
C2

pdx =
∫ β(b)

α(b)

(F1(b, t), 0) · (0, 1)dt =
∫ β(b)

α(b)

0dt = 0, (4.4.17)

∫
−C3

pdx =
∫ b

a

(F1(t, β(t)), 0) · (1, β′(t))dt =
∫ b

a

F1(t, β(t))dt, (4.4.18)

and ∫
−C4

pdx =
∫ β(a)

α(a)

(F1(a, t), 0) · (0, 1)dt =
∫ β(a)

α(a)

0dt = 0. (4.4.19)

Hence ∫
∂D

pdx =
∫ b

a

F1(t, α(t))dt−
∫ b

a

F1(t, β(t))dt

= −
∫ b

a

(F1(t, β(t))− F1(t, α(t)))dt. (4.4.20)

Now, by the Fundamental Theorem of Calculus,∫ β(t)

α(t)

∂

∂y
F1(t, y)dy = F1(t, β(t))− F1(t, α(t)), (4.4.21)

and so ∫
∂D

pdx = −
∫ b

a

∫ β(t)

α(t)

∂

∂y
F1(t, y)dydt

= −
∫ b

a

∫ β(x)

α(x)

∂

∂y
F1(x, y)dydx

= −
∫ ∫

D

∂p

∂y
dxdy. (4.4.22)
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A similar calculation, treating D as a region of Type II, shows that∫
∂D

qdy =
∫ ∫

D

∂q

∂x
dxdy. (4.4.23)

(You are asked to verify this in Problem 7.) Putting (4.4.22) and (4.4.23) together, we
have ∫

∂D

F · ds =
∫

∂D

pdx + qdy = −
∫ ∫

D

∂p

∂y
dxdy +

∫ ∫
D

∂q

∂x
dxdy

=
∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.24)

Green’s Theorem Suppose D is a region of Type III, ∂D is the boundary of D with
counterclockwise orientation, and the curves describing ∂D are differentiable. Let F :
R2 → R2 be a C1 vector field, with coordinate functions p = F1(x, y) and q = F2(x, y).
Then ∫

∂D

pdx + qdy =
∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy. (4.4.25)

Example Let D be the region bounded by the triangle with vertices at (0, 0), (2, 0), and
(0, 3), as shown in Figure 4.4.3. If we orient ∂D in the counterclockwise direction, then∫

∂D

(3x2 + y)dx + 5xdy =
∫ ∫

D

(
∂

∂x
(5x)− ∂

∂y
(3x2 + y)

)
dxdy

=
∫ ∫

D

(5− 1)dxdy

= 4
∫ ∫

D

dxdy

= (4)(3)
= 12,

where we have used the fact that the area of D is 3 to evaluate the double integral.
The line integral in the previous example reduced to finding the area of the region

D. This can be exploited in the reverse direction to compute the area of a region. For
example, given a region D with area A and boundary ∂D, it follows from Green’s theorem
that

A =
∫ ∫

D

dxdy =
∫

∂D

pdx + qdy (4.4.26)

for any choice of p and q which have the property that

∂q

∂x
− ∂p

∂y
= 1. (4.4.27)
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Figure 4.4.3 A triangle with counterclockwise orientation

For example, letting p = 0 and q = x, we have

A =
∫

∂D

xdy (4.4.28)

and, letting p = −y and q = 0, we have

A = −
∫

∂D

ydx. (4.4.29)

The next example illustrates using the average of (4.4.28) and (4.4.29) to find A:

A =
1
2

(∫
∂D

xdy −
∫

∂D

ydx

)
=

1
2

∫
∂D

xdy − ydx. (4.4.30)

Example Let A be the area of the region D bounded by the ellipse with equation

x2

a2
+

y2

b2
= 1,

where a > 0 and b > 0, as shown in Figure 4.4.4. Since we may parametrize ∂D, with
counterclockwise orientation, by

ϕ(t) = (a cos(t), b sin(t)),
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a

b

−a

−b

Figure 4.4.4 The ellipse
x2

a2
+

y2

b2
= 1 with counterclockwise orientation

0 ≤ t ≤ 2π, we have

A =
1
2

∫
∂D

xdy − ydx

=
1
2

∫ 2π

0

(−b sin(t), a cos(t)) · (−a sin(t), b cos(t)dt

=
1
2

∫ 2π

0

(ab sin2(t) + ab cos2(t))dt

=
ab

2

∫ 2π

0

dt

=
(

ab

2

)
(2π)

= πab.

Problems

1. Let D be the closed rectangle in R2 with vertices at (0, 0), (2, 0), (2, 4), and (0, 4),
with boundary ∂D oriented counterclockwise. Use Green’s theorem to evaluate the
following line integrals.

(a)
∫

∂D

2xydx + 3x2dy (b)
∫

∂D

ydx + xdy

2. Let D be the triangle in R2 with vertices at (0, 0), (2, 0), and (0, 4), with boundary ∂D
oriented counterclockwise. Use Green’s theorem to evaluate the following line integrals.

(a)
∫

∂D

2xy2dx + 4xdy (b)
∫

∂D

ydx + xdy

(c)
∫

∂D

ydx− xdy
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3. Use Green’s theorem to find the area of a circle of radius r.

4. Use Green’s theorem to find the area of the region D enclosed by the hypocycloid

x
2
3 + y

2
3 = a

2
3 ,

where a > 0. Note that we may parametrize this curve using

ϕ(t) = (a cos3(t), a sin3(t)),

0 ≤ t ≤ 2π.

5. Use Green’s theorem to find the area of the region enclosed by one “petal” of the curve
parametrized by

ϕ(t) = (sin(2t) cos(t), sin(2t) sin(t)).

6. Find the area of the region enclosed by the cardioid parametrized by

ϕ(t) = ((2 + cos(t)) cos(t), (2 + cos(t)) sin(t)),

0 ≤ t ≤ 2π.

7. Verify (4.4.23), thus completing the proof of Green’s theorem.

8. Suppose the vector field F : R2 → R2 with coordinate functions p = F1(x, y) and
q = F2(x, y) is C1 on an open set containing the Type III region D. Moreover, suppose
F is the gradient of a scalar function f : R2 → R.
(a) Show that

∂q

∂x
− ∂p

∂y
= 0

for all points (x, y) in D.
(b) Use Green’s theorem to show that∫

∂D

pdx + qdy = 0,

where ∂D is the boundary of D with counterclockwise orientation.

9. How many ways do you know to calculate the area of a circle?

10. Who was George Green?

11. Explain how Green’s theorem is a generalization of the Fundamental Theorem of In-
tegral Calculus.

12. Let b > a, let C1 be the circle of radius b centered at the origin, and let C2 be the
circle of radius a centered at the origin. If D is the annular region between C1 and
C2 and F is a C1 vector field with coordinate functions p = F1(x, y) and q = F2(x, y),
show that ∫ ∫

D

(
∂q

∂x
− ∂p

∂y

)
dxdy =

∫
C1

pdx + qdy +
∫

C2

pdx + qdy,

where C1 is oriented in the counterclockwise direction and C2 is oriented in the clock-
wise direction. (Hint: Decompose D into Type III regions D1, D2, D3, and D4, each
with boundary oriented counterclockwise, as shown in Figure 4.4.5.)
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a

Figure 4.4.5 Decomposition of an annulus into regions of Type III


