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Second-Order Approximations

In one-variable calculus, Taylor polynomials provide a natural way to extend best affine
approximations to higher-order polynomial approximations. It is possible to generalize
these ideas to scalar-valued functions of two or more variables, but the theory rapidly
becomes involved and technical. In this section we will be content merely to point the
way with a discussion of second-degree Taylor polynomials. Even at this level, it is best
to leave full explanations for a course in advanced calculus.

Higher-order derivatives
The first step is to introduce higher order derivatives. If f : Rn → R has partial derivatives
which exist on an open set U , then, for any i = 1, 2, 3, . . . , n, ∂f

∂xi
is itself a function from Rn

to R. The partial derivatives of ∂f
∂xi

, if they exist, are called second-order partial derivatives
of f . We may denote the partial derivative of ∂f

∂xi
with respect to xj , j = 1, 2, 3, . . .,

evaluated at a point x, by either ∂2

∂xj∂xi
f(x), or fxixj (x), or Dxixj f(x). Note the order

in which the variables are written; it is possible that differentiating first with respect to
xi and second with respect xj will yield a different result than if the order were reversed.
If j = i, we will write ∂2

∂x2
i

f(x) for ∂2

∂xi∂xi
f(x). It is, of course, possible to extend this

notation to third, fourth, and higher-order derivatives.

Example Suppose f(x, y) = x2y − 3x sin(2y). Then

fx(x, y) = 2xy − 3 sin(2y)

and
fy(x, y) = x2 − 6x cos(2y),

so
fxx(x, y) = 2y,

fxy(x, y) = 2x− 6 cos(2y),

fyy(x, y) = 12x sin(2y),

and
fyx(x, y) = 2x− 6 cos(2y).

Note that, in this example, fxy(x, y) = fyx(x, y). For an example of a third-order deriva-
tive,

fyxy(x, y) = 12 sin(2y).
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Example Suppose w = xy2z3 − 4xy log(z). Then, for example,

∂2w

∂y∂x
=

∂

∂y

(
∂w

∂x

)
=

∂

∂y
(y2z3 − 4y log(z)) = 2yz3 − 4 log(z)

and
∂2w

∂z2
=

∂

∂z

(
∂w

∂z

)
=

∂

∂z

(
3xy2z2 − 4xy

z

)
= 6xy2z +

4xy

z2
.

Also,
∂2w

∂x∂y
=

∂

∂x

(
∂w

∂y

)
=

∂

∂x
(2xyz3 − 4x log(z)) = 2yz3 − 4 log(z),

and so
∂2w

∂y∂x
=

∂2w

∂x∂y
.

In both of our examples we have seen instances where mixed second partial derivatives,
that is, second-order partial derivatives with respect to two different variables, taken in
different orders are equal. This is not always the case, but does follow if we assume that
both of the mixed partial derivatives in question are continuous.

Definition We say a function f : Rn → R is C2 on an open set U if fxjxi
is continuous

on U for each i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem If f is C2 on an open ball containing a point c, then

∂2

∂xj∂xi
f(c) =

∂2

∂xi∂xj
f(c)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Although we have the tools to verify this result, we will leave the justification for a
more advanced course.

We shall see that it is convenient to use a matrix to arrange the second partial deriva-
tives of a function f . If f : Rn → R, there are n2 second partial derivatives and this matrix
will be n× n.

Definition Suppose the second-order partial derivatives of f : Rn → R all exist at the
point c. We call the n× n matrix

Hf(c) =



∂2

∂x2
1

f(c)
∂2

∂x2∂x1
f(c)

∂2

∂x3∂x1
f(c) · · · ∂2

∂xn∂x1
f(c)

∂2

∂x1∂x2
f(c)

∂2

∂x2
2

f(c)
∂2

∂x3∂x2
f(c) · · · ∂2

∂xn∂x2
f(c)

∂2

∂x1∂x3
f(c)

∂2

∂x2∂x3
f(c)

∂2

∂x2
3

f(c) · · · ∂2

∂xn∂x3
f(c)

...
...

...
. . .

...
∂2

∂x1∂xn
f(c)

∂2

∂x2∂xn
f(c)

∂2

∂x3∂xn
f(c) · · · ∂2

∂x2
n

f(c)


(3.4.1)

the Hessian of f at c.
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Put another way, the Hessian of f at c is the n× n matrix whose ith row is ∇fxi
(c).

Example Suppose f(x, y) = x2y − 3x sin(2y). Then, using our results from above,

Hf(x, y) =
[

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
=
[

2y 2x− 6 cos(y)
2x− 6 cos(2y) 12x sin(2y)

]
.

Thus, for example,

Hf(2, 0) =
[

0 −2
−2 0

]
.

Suppose f : Rn → R is C2 on an open ball B2(c, r) and let h = (h1, h2) be a point
with ‖h‖ < r. If we define ϕ : R → R by ϕ(t) = f(c + th), then ϕ(0) = f(c) and
ϕ(1) = f(c+h). From the one-variable calculus version of Taylor’s theorem, we know that

ϕ(1) = ϕ(0) + ϕ′(0) +
1
2
ϕ′′(s), (3.4.2)

where s is a real number between 0 and 1. Using the chain rule, we have

ϕ′(t) = ∇f(c + th) · d

dt
(c + th) = ∇f(c + th) · h = fx(c + th)h1 + fy(c + th)h2 (3.4.3)

and

ϕ′′(t) = h1∇fx(c + th) · h + h2∇fy(c + th) · h
= (h1∇fx(c + th) + h2∇fy(c + th) · h

= [ h1 h2 ]
[

fxx(c + th) fxy(c + th)
fyx(c + th) fyy(c + th)

] [
h1

h2

]
= hT Hf(c + th)h, (3.4.4)

where we have used the notation

h =
[

h1

h2

]
and

hT = [ h1 h2 ] ,

the latter being called the transpose of h (see Problem 12 of Section 1.6). Hence

ϕ′(0) = ∇f(c) · h (3.4.5)

and
ϕ′′(s) =

1
2
hT Hf(c + sh)h, (3.4.6)

so, substituting into (3.4.2), we have

f(c + h) = ϕ(1) = f(c) +∇f(c) · h +
1
2
hT Hf(c + sh)h. (3.4.7)

This result, a version of Taylor’s theorem, is easily generalized to higher dimensions.
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Theorem Suppose f : Rn → R is C2 on an open ball Bn(c, r) and let h be a point with
‖h‖ < r. Then there exists a real number s between 0 and 1 such that

f(c + h) = f(c) +∇f(c) · h +
1
2
hT Hf(c + sh)h. (3.4.8)

If we let x = c + h and evaluate the Hessian at c, (3.4.8) becomes a polynomial
approximation for f .

Definition If f : Rn → R is C2 on an open ball about the point c, then we call

P2(x) = f(c) +∇f(c) · (x− c) +
1
2

(x− c)T Hf(c)(x− c) (3.4.9)

the second-order Taylor polynomial for f at c.

Example To find the second-order Taylor polynomial for f(x, y) = e−2x+y at (0, 0), we
compute

∇f(x, y) = (−2e−2x+y, e−2x+y)

and

Hf(x, y) =
[

4e−2x+y −2e−2x+y

−2e−2x+y e−2x+y

]
,

from which it follows that
∇f(0, 0) = (−2, 1)

and

Hf(0, 0) =
[

4 −2
−2 1

]
.

Then

P2(x, y) = f(0, 0) +∇f(0, 0) · (x, y) +
1
2

[ x y ] Hf(0, 0)
[

x
y

]
= 1 + (−2, 1) · (x, y) +

1
2

[ x y ]
[

4 −2
−2 1

] [
x
y

]
= 1− 2x + y =

1
2

[ x y ]
[

4x− 2y
−2x + y

]
= 1− 2x + y +

1
2

(4x2 − 2xy − 2xy + y2)

= 1− 2x + y + 2x2 − 2xy +
1
2
y2.

Symmetric matrices
Note that if f : R2 → R is C2 on an open ball about the point c, then the entry in the
ith row and jth column of Hf(c) is equal to the entry in the jth row and ith column of
Hf(c) since

∂2

∂xj∂xi
f(c) =

∂2

∂xi∂xj
f(c).
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Definition We call a matrix M = [aij ] with the property that aij = aji for all i 6= j a
symmetric matrix.

Example The matrices [
2 1
1 5

]
and  1 2 3

2 4 5
3 5 −7


are both symmetric, while the matrices [

2 −1
3 4

]
and  2 1 3

2 3 4
−2 4 −6


are not symmetric.

Example The Hessian of any C2 scalar valued function is a symmetric matrix. For
example, the Hessian of f(x, y) = e−2x+y, namely,

Hf(x, y) =
[

4e−2x+y −2e−2x+y

−2e−2x+y e−2x+y

]
,

is symmetric for any value of (x, y).

Given an n× n symmetric matrix M , the function q : Rn → R defined by

q(x) = xT Mx

is a quadratic polynomial. When M is the Hessian of some function f , this is the form of
the quadratic term in the second-order Taylor polynomial for f . In the next section it will
be important to be able to determine when this term is positive for all x 6= 0 or negative
for all x 6= 0.

Definition Let M be an n× n symmetric matrix and define q : Rn → R by

q(x) = xT Mx.

We say M is positive definite if q(x) > 0 for all x 6= 0 in Rn, negative definite if q(x) < 0
for all x 6= 0 in Rn, and indefinite if there exists an x 6= 0 for which q(x) > 0 and an x 6= 0
for which q(x) < 0. Otherwise, we say M is nondefinite.
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In general it is not easy to determine to which of these categories a given symmetric
matrix belongs. However, the important special case of 2× 2 matrices is straightforward.
Consider

M =
[

a b
b c

]
and let

q(x, y) = [ x y ] M
[

x
y

]
= ax2 + 2bxy + cy2. (3.4.10)

If a 6= 0, then we may complete the square in (3.4.10) to obtain

q(x, y) = a

(
x2 +

2b

a
xy

)
+ cy2

= a

((
x +

b

a
y

)2

− b2

a2
y2

)
+ cy2

= a

(
x +

b

a
y

)2

+
(

c− b2

a

)
y2

= a

(
x +

b

a
y

)2

+
ac− b2

a
y2

= a

(
x +

b

a
y

)2

+
det(M)

a
y2 (3.4.11).

Now suppose det(M) > 0. Then from (3.4.11) we see that q(x, y) > 0 for all (x, y) 6= (0, 0)
if a > 0 and q(x, y) < 0 for all (x, y) 6= (0, 0) if a < 0. That is, M is positive definite if
a > 0 and negative definite if a < 0. If det(M) < 0, then q(1, 0) and q

(
− b

a , 1
)

will have
opposite signs, and so M is indefinite. Finally, suppose det(M) = 0. Then

q(x, y) = a

(
x +

b

a
y

)2

,

so q(x, y) = 0 when x = − b
ay. Moreover, q(x, y) has the same sign as a for all other values

of (x, y). Hence in this case M is nondefinite.
Similar analyses for the case a = 0 give us the following result.

Theorem Suppose

M =
[

a b
b c

]
.

If det(M) > 0, then M is positive definite if a > 0 and negative definite if a < 0. If
det(M) < 0, then M is indefinite. If det(M) = 0, then M is nondefinite.

Example The matrix

M =
[

2 1
1 3

]
is positive definite since det(M) = 5 > 0 and 2 > 0.
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Example The matrix

M =
[
−2 1

1 −4

]
is negative definite since det(M) = 7 > 0 and −2 < 0.

Example The matrix

M =
[
−3 1

1 2

]
is indefinite since det(M) = −7 < 0.

Example The matrix

M =
[

4 2
2 1

]
is nondefinite since det(M) = 0.

In the next section we will see how these ideas help us identify local extreme values
for scalar valued functions of two variables.

Problems

1. Let f(x, y) = x3y2 − 4x2e−3y. Find the following.

(a)
∂2

∂x∂y
f(x, y) (b)

∂2

∂y∂x
f(x, y)

(c)
∂2

∂x2
f(x, y) (d)

∂3

∂x∂y∂x
f(x, y)

(e)
∂3

∂x∂y2
f(x, y) (f)

∂3

∂y3
f(x, y)

(g) fyy(x, y) (h) fyxy(x, y)

2. Let f(x, y, z) =
xy

x2 + y2 + z2
. Find the following.

(a)
∂2

∂z∂x
f(x, y, z) (b)

∂2

∂y∂z
f(x, y, z)

(c)
∂2

∂z2
f(x, y, z) (d)

∂3

∂x∂y∂z
f(x, y, z)

(e) fzyx(x, y, z) (f) fyyy(x, y, z)

3. Find the Hessian of each of the following functions.
(a) f(x, y) = 3x2y − 4xy3 (b) g(x, y) = 4e−x cos(3y)
(c) g(x, y, z) = 4xy2z3 (d) f(x, y, z) = − log(x2 + y2 + z2)

4. Find the second-order Taylor polynomial for each of the following at the point c.
(a) f(x, y) = xe−y, c = (0, 0) (b) g(x, y) = x sin(x + y), c = (0, 0)
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(c) f(x, y) =
1

x + y
, c = (1, 1) (d) g(x, y, z) = ex−2y+3z, c = (0, 0, 0)

5. Classify each of the following symmetric 2 × 2 matrices as either positive definite,
negative definite, indefinite, or nondefinite.

(a)
[

3 2
2 4

]
(b)

[
1 2
2 2

]
(c)

[
−2 3

3 −5

]
(d)

[
0 1
1 0

]
(e)

[
1 0
0 1

]
(f)

[
8 4
4 2

]
6. Let M be an n× n symmetric nondefinite matrix and define q : Rn → R by

q(x) = xT Mx.

Explain why (1) there exists a vector a 6= 0 such that q(a) = 0 and (2) either q(x) ≥ 0
for all x in Rn or q(x) ≤ 0 for all x in Rn.

7. Suppose f : Rn → R is C2 on an open ball Bn(c, r), ∇f(c) = 0, and Hf(x) is positive
definite for all x in Bn(c, r). Show that f(c) < f(x) for all x in Bn(c, r). What would
happen if Hf(x) were negative definite for all x in Bn(c, r)? What does this say in
the case n = 1?

8. Let

f(x, y) =

 xy(x2 − y2)
x2 + y2

, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

(a) Show that fx(0, y) = −y for all y.
(b) Show that fy(x, 0) = x for all x.
(c) Show that fyx(0, 0) 6= fxy(0, 0).
(d) Is f C2?


