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Section 3.3

Best Affine Approximations

Best affine approximations

Given a function f : Rn → R and a point c, we wish to find the affine function A : Rn → R
which best approximates f for points close to c. As before, best will mean that the
remainder function,

R(h) = f(c + h)−A(c + h), (3.3.1)

approaches 0 at a sufficiently fast rate. In this context, since R(h) is a scalar and h is a
vector, sufficiently fast will mean that

lim
h→0

R(h)
‖h‖

= 0. (3.3.2)

Generalizing our previous notation, we will say that a function R : Rn → R satisfying
(3.3.2) is o(h). Note that if n = 1 this extended definition of o(h) is equivalent to the
definition given in Section 2.2.

Definition Suppose f : Rn → R is defined on an open ball containing the point c. We
call an affine function A : Rn → R the best affine approximation to f at c if (1) A(c) = f(c)
and (2) R(h) is o(h), where

R(h) = f(c + h)−A(c + h). (3.3.3)

Suppose f : Rn → R and suppose A : Rn → R is the best affine approximation to f at
c. Since A is affine, there exists a linear function L : Rn → R and a scalar b such that

A(x) = L(x) + b (3.3.4)

for all x in Rn. Since A(c) = f(c), we have

f(c) = L(c) + b, (3.3.5)

which implies that
b = f(c)− L(c). (3.3.6)

Hence
A(x) = L(x) + f(c)− L(c) = L(x− c) + f(c) (3.3.7)
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for all x in Rn. Moreover, if we let

a = (L(e1), L(e2), . . . , L(en)), (3.3.8)

where e1, e2, . . . , en are, as usual, the standard basis vectors for Rn, then, from our results
in Section 1.5,

L(x) = a · x (3.3.9)

for all x in Rn. Hence
A(x) = a · (x− c) + f(c), (3.3.10)

for all x in Rn, and we see that A is completely determined by the vector a

Definition Suppose f : Rn → R is defined on an open ball containing the point c. If f
has a best affine approximation at c, then we say f is differentiable at c. Moreover, if the
best affine approximation to f at c is given by

A(x) = a · (x− c) + f(c), (3.3.11)

then we call a the derivative of f at c and write Df(c) = a.

Now suppose f : Rn → R is differentiable at c with best affine approximation A and
let a = (a1, a2, . . . , an) = Df(c). Since

R(h) = f(c + h)−A(c + h) = f(c + h)− a · h− f(c) (3.3.12)

is o(h), we must have

lim
h→0

R(h)
‖h‖

= 0. (3.3.13)

In particular, for k = 1, 2, . . . , n, if we let h = tek, then h approaches 0 as t approaches 0,
so

0 = lim
t→0

R(tek)
‖tek‖

= lim
t→0

f(c + tek)− t(a · ek)− f(c)
|t|

= lim
t→0

f(c + tek)− tak − f(c)
|t|

First considering t > 0, we have

0 = lim
t→0+

f(c + tek)− tak − f(c)
t

= lim
t→0+

(
f(c + tek)− f(c)

t
− ak

)
, (3.3.14)

implying that

ak = lim
t→0+

f(c + tek)− f(c)
t

. (3.3.15)

With t < 0, we have

0 = lim
t→0−

f(c + tek)− tak − f(c)
−t

= − lim
t→0−

(
f(c + tek)− f(c)

t
− ak

)
, (3.3.16)
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implying that

ak = lim
t→0−

f(c + tek)− f(c)
t

. (3.3.17)

Hence

ak = lim
t→0

f(c + tek)− f(c)
t

=
∂

∂xk
f(c). (3.3.18)

Thus we have shown that

a =
(

∂

∂x1
f(c),

∂

∂x2
f(c), . . . ,

∂

∂xn
f(c)

)
= ∇f(c). (3.3.19)

Theorem If f : Rn → R is differentiable at c, then

Df(c) = ∇f(c) (3.3.20)

It now follows that if f : Rn → R is differentiable at c, then the best affine approxi-
mation to f at c is

A(x) = ∇f(c) · (x− c)− f(c). (3.3.21)

However, the converse does not hold: it is possible for ∇f(c) to exist even when f is not
differentiable at c. Before looking at an example, note that if f is differentiable at c and
A is the best affine approximation to f at c, then, since R(h) = f(c + h) − A(c + h) is
o(h),

lim
h→0

(f(c + h)−A(c + h)) = lim
h→0

R(h)
‖h‖

‖h‖ = 0‖0‖ = 0. (3.3.22)

Now A is continuous at c, so it follows that

lim
h→0

f(c + h) = lim
h→0

A(c + h) = A(c) = f(c). (3.3.23)

In other words, f is continuous at c.

Theorem If f : Rn → R is differentiable at c, then f is continuous at c.

Example Consider the function

g(x, y) =


xy

x2 + y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

In Section 3.1 we showed that g is not continuous at (0, 0) and in Section 3.2 we saw that
∇g(0, 0) = (0, 0). Since g is not continuous at (0, 0), it now follows, from the previous
theorem, that g is not differentiable at (0, 0), even though the gradient exists at that
point. From the graph of g in Figure 3.3.1 (originally seen in Figure 3.1.7), we can see
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Figure 3.3.1 The graph of a nondifferentiable function

that the fact that g is not differentiable, in fact, not even continuous, at the origin shows
up geometrically as a tear in the surface.

From this example we see that the differentiability of a function f : Rn → R at a
point c requires more than just the existence of the gradient of f at c. It turns out that
continuity of the partial derivatives of f on an open ball containing c suffices to show that
f is differentiable at c. Note that the partial derivatives of g in the previous example are
not continuous (see Problem 8 of Section 3.2).

So we will now assume that f : Rn → R is C1 on some open ball containing c. If we
define an affine function A : Rn → R by

A(x) = ∇f(c) · (x− c) + f(c), (3.3.24)

then the remainder function is

R(h) = f(c + h)−A(c + h) = f(c + h)− f(c)−∇f(c) · h. (3.3.25)

We need to show that R(h) is o(h). Toward that end, for a fixed h 6= 0, define ϕ : R → R
by

ϕ(t) = f(c + th). (3.3.26)

We first note that ϕ is differentiable with

ϕ′(t) = lim
s→0

ϕ(t + s)− ϕ(t)
s

= lim
s→0

f(c + (t + s)h)− f(c + th)
s
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= ‖h‖ lim
s→0

f
(
c + th + s‖h‖ h

‖h‖

)
− f(c + th)

s‖h‖
= ‖h‖D h

‖h‖
f(c + th)

= ‖h‖
(
∇f(c + th) · h

‖h‖

)
= ∇f(c + th) · h. (3.3.27)

From the Mean Value Theorem of single-variable calculus, it follows that there exists a
number s between 0 and 1 such that

ϕ′(s) = ϕ(1)− ϕ(0) = f(c + h)− f(c). (3.3.28)

Hence we may write

R(h) = ∇f(c + sh) · h−∇f(c) · h = (∇f(c + sh)−∇f(c)) · h. (3.3.29)

Applying the Cauchy-Schwarz inequality to (3.3.29),

|R(h)| ≤ ‖∇f(c + sh)−∇f(c)‖‖h‖, (3.3.30)

and so
|R(h)|
‖h‖

≤ ‖∇f(c + sh)−∇f(c)‖. (3.3.31)

Now the partial derivatives of f are continuous, so

lim
h→0

‖∇f(c + sh)−∇f(c)‖ = ‖∇f(c + s0)−∇f(c)‖

= ‖∇f(c)−∇f(c)‖
= 0.

(3.3.32)

Hence

lim
h→0

R(h)
‖h‖

= 0. (3.3.33)

That is, R(h) is o(h) and A is the best affine approximation to f at c. Thus we have the
following fundamental theorem.

Theorem If f : Rn → R is C1 on an open ball containing the point c, then f is
differentiable at c.

Example Suppose f : R2 → R is defined by

f(x, y) = 4− 2x2 − y2.

To find the best affine approximation to f at (1, 1), we first compute

∇f(x, y) = (−4x,−2y).
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Thus ∇f(1, 1) = (−4,−2) and f(1, 1) = 1, so the best affine approximation is

A(x, y) = (−4,−2) · (x− 1, y − 1) + 1.

Simplifying, we have
A(x, y) = −4x− 2y + 7.

Example Suppose f : R3 → R is defined by

f(x, y, z) =
√

x2 + y2 + z2.

Then
∇f(x, y, z) =

1√
x2 + y2 + z2

(x, y, z).

Thus, for example, the best affine approximation to f at (2, 1, 2) is

A(x, y, z) = ∇f(2, 1, 2) · (x− 2, y − 1, z − 2) + f(2, 1, 2)

=
1
3
(2, 1, 2) · (x− 2, y − 1, z − 2) + 3

=
2
3
(x− 2) +

1
3
(y − 1) +

2
3
(z − 2) + 3

=
2
3
x +

1
3
y +

2
3
z.

Now suppose we let (x, y, z) be the lengths of the three sides of a solid block, in which case
f(x, y, z) represents the length of the diagonal of the box. Moreover, suppose we measure
the sides of the block and find them to have lengths x = 2+ εx, y = 1+ εy, and z = 2+ εz,
where |εx| ≤ h, |εy| ≤ h, and |εz| ≤ h for some positive number h representing the limit of
the accuracy of our measuring device. We now estimate the diagonal of the box to be

f(2, 1, 2) = 3

with an error of

|f(2 + εx, 1 + εy, 2 + εz)− f(2, 1, 2)| ≈ |A(2 + εx, 1 + εy, 2 + εz)− 3|

=
∣∣∣∣23εx +

1
3
εy +

2
3
εz

∣∣∣∣
≤ 2

3
|εx|+

1
3
|εy|+

2
3
|εz|

≤ h

(
2
3

+
1
3

+
2
3

)
=

5
3
h.
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That is, we expect our error in estimating the diagonal of the block to be no more that 5
3

times the maximum error in our measurements of the sides of the block. For example, if
the error in our length measurements is off by no more than ±0.1 centimeters, then our
estimate of the diagonal of the box is off by no more than ±0.17 centimeters.

Note that if A : Rn → R is the best affine approximation to f : Rn → R at c =
(c1, c2, . . . , cn), then the graph of A is the set of all points (x1, x2, . . . , xn, z) in Rn+1

satisfying
z = ∇f(c) · (x1 − c1, x2 − c2, . . . , xn − cn) + f(c). (3.3.34)

Letting

n =
(

∂

∂x1
f(c),

∂

∂x2
f(c), . . . ,

∂

∂xn
f(c),−1

)
, (3.3.35)

we may describe the graph of A as the set of all points in Rn+1 satisfying

n · (x1 − c1, x2 − c2, . . . , xn − cn, z − f(c)) = 0. (3.3.36)

Thus the graph of A is a hyperplane in Rn+1 passing through the point (c1, c2, . . . , cn, f(c))
(a point on the graph of f) with normal vector n.

Definition If A : Rn → R is the best affine approximation to f : Rn → R at c =
(c1, c2, . . . , cn), then we call the graph of A the tangent hyperplane to the graph of f at
(c1, c2, . . . , cn, f(c)).

Example We saw above that the best affine approximation to

f(x, y) = 4− 2x2 − y2

at (1, 1) is
A(x, y) = 7− 4x− 2y.

Hence the equation of the tangent plane to the graph of f at is

z = 7− 4x− 2y,

or
4x + 2y + z = 7.

Note that the vector n = (4, 2, 1) is normal to the tangent plane, and hence normal to the
graph of f at (1, 1, 1). The graph of f along with the tangent plane at (1, 1, 1) is shown in
Figure 3.3.2.

The chain rule
Suppose ϕ : R → Rn is differentiable at a point c and f : Rn → R is differentiable at the
point ϕ(c). Then the composition of f and ϕ is a function f ◦ϕ : R → R. To compute the
derivative of f ◦ ϕ at c, we must evaluate

(f ◦ ϕ)′(c) = lim
h→0

f ◦ ϕ(c + h)− f ◦ ϕ(c)
h

= lim
h→0

f(ϕ(c + h))− f(ϕ(c))
h

. (3.3.37)
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Figure 3.3.2 A plane tangent to the graph of f(x, y) = 4− 2x2 − y2

Let A be the best affine approximation to f at a = ϕ(c) and let k = ϕ(c+h)−ϕ(c). Then

f(ϕ(c + h)) = f(a + k) = A(a + k) + R(k), (3.3.38)

where R(k) is o(k). Now
A(a + k) = ∇f(a) · k + f(a), (3.3.39)

so

f(ϕ(c + h))− f(ϕ(c)) = f(a + k)− f(a)
= ∇f(a) · k + R(k)
= ∇f(a) · (ϕ(c + h)− ϕ(c)) + R(k). (3.3.40)

Substituting (3.3.40) into (3.3.37),we have

(f ◦ ϕ)′(c) = lim
h→0

∇f(a) · (ϕ(c + h)− ϕ(c)) + R(k)
h

= lim
h→0

∇f(a) · ϕ(c + h)− ϕ(c)
h

+ lim
h→0

R(k)
h

= ∇f(a) ·Dϕ(c) + lim
h→0

R(k)
h

. (3.3.41)
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Now R(k) is o(k), so

lim
k→0

R(k)
‖k‖

= 0,

from which it follows that, for any given ε > 0, we have

|R(k)|
‖k‖

< ε (3.3.42)

for sufficiently small k 6= 0. Since R(0) = 0, it follows that

|R(k)| < ε‖k‖ (3.3.43)

for all k sufficiently small. Moreover, ϕ is continuous at c, so we may choose h small
enough to guarantee that

k = ϕ(c + h)− ϕ(h)

is small enough for (3.3.43) to hold. Hence for sufficiently small h 6= 0,

|R(k)|
h

<
ε‖k‖

h
. (3.3.44)

Now

lim
h→0

‖k‖
h

= lim
h→0

‖ϕ(c + h)− ϕ(c)‖
h

= ‖Dϕ(c)‖ (3.3.45)

and the choice of ε was arbitrary, so it follows that

lim
h→0

R(k)
h

= 0. (3.3.46)

Hence
(f ◦ ϕ)′(c) = ∇f(a) ·Dϕ(c). (3.3.47)

This is a version of the chain rule.

Theorem Suppose ϕ : R → Rn is differentiable at c and f : Rn → R is differentiable at
ϕ(c). Then

(f ◦ ϕ)′(c) = ∇f(ϕ(c)) ·Dϕ(c). (3.3.48)

If we imagine a particle moving along the curve C parametrized by ϕ, with velocity
v(t) and unit tangent vector T (t) at time t, then (3.3.48) says that the rate of change of
f along C at ϕ(c) is

∇f(ϕ(c)) · v(c) = ‖v(c)‖∇f(ϕ(c)) · T (c) = ‖v(c)‖DT (c)f(ϕ(c)). (3.3.49)

In other words, the rate of change of f along C is the rate of change of f in the direction
of T (t) multiplied by the speed of the particle moving along the curve.
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Example Suppose that the temperature at a point (x, y, z) inside a cubical region of
space is given by

T (x, y, z) = 80− 20xe−
1
20 (x2+y2+z2).

Moreover, suppose a bug flies through this region along the elliptical helix parametrized
by

ϕ(t) = (cos(πt), 2 sin(πt), t).

Then
∇T (x, y, z) = e−

1
20 (x2+y2+z2)(2x2 − 20, 2xy, 2xz)

and
Dϕ(t) = (−π sin(πt), 2π cos(πt), 1).

Hence, for example, if we want to know the rate of change of temperature for the bug at
t = 1

3 , we would evaluate

Dϕ

(
1
3

)
=

(
−
√

3π

2
, π, 1

)
and

∇T

(
ϕ

(
1
3

))
= ∇T

(
1
2
,
√

3,
1
3

)
= e−

121
720

(
−39

2
,
√

3,
1
3

)
,

so

(T ◦ ϕ)′
(

1
3

)
= e−

121
720

(
−39

2
,
√

3,
1
3

)
·

(
−
√

3π

2
, π, 1

)

= e−
121
720

(
39π

√
3

4
+
√

3π +
1
3

)
= 49.73,

where the final value has been rounded to two decimal places. Hence at that moment the
temperature for the bug is increasing at rate of 49.73◦ per second. We could also express
this as

dT

dt

∣∣∣
t= 1

3

= 49.73◦.

For an alternative formulation of the chain rule, suppose f : Rn → R and xi : R → R,
i = 1, 2, . . . , n, are all differentiable and let w = f(x1, x2, . . . , xn). If x1, x2, . . . , xn are all
functions of t, then, by the chain rule,

dw

dt
=
(

∂w

∂x1
,

∂w

∂x2
, . . . ,

∂w

∂xn

)
·
(

dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

)
=

∂w

∂x1

dx1

dt
+

∂w

∂x2

dx2

dt
+ · · ·+ ∂w

∂xn

dxn

dt
. (3.3.50)
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Example Suppose the dimensions of a box are increasing so that its length, width, and
height at time t are, in centimeters,

x = 3t,

y = t2,

and
z = t3,

respectively. Since the volume of the box is

V = xyz,

the rate of change of the volume is

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt
= 3yz + 2xzt + 3xyt2.

Hence, for example, at t = 2 we have x = 6, y = 4, and z = 8, so

dV

dt

∣∣∣∣
t=2

= 96 + 192 + 288 = 576 cm3/sec.

The gradient and level sets
Now consider a differentiable function f : Rn → R and a point a on the level set S specified
by f(x) = c for some scalar c. Suppose ϕ : R → Rn is a smooth parametrization of a curve
C which lies entirely on S and passes through a. Let ϕ(b) = a. Then the composition of
f and ϕ is a constant function; that is,

g(t) = f ◦ ϕ(t) = f(ϕ(t)) = c (3.3.51)

for all values of t. Thus, using the chain rule,

0 = g′(b) = ∇f(ϕ(b)) ·Dϕ(b) = ∇f(a) ·Dϕ(b). (3.3.52)

Hence
∇f(a) ⊥ Dϕ(b). (3.3.53)

Now Dϕ(b) is tangent to C at a; moreover, since (3.3.53) holds for any curve in S passing
through a, ∇f(a) is orthogonal to every vector tangent to S. In other words, ∇f(a) is
normal to the hyperplane tangent to S at a. Thus we have the following theorem.

Theorem Suppose f : Rn → R is differentiable on an open ball containing the point a,
and let S be the set of all points in Rn such that f(x) = f(a). If ∇f(a) 6= 0, then the
hyperplane with equation

∇f(a) · (x− a) = 0 (3.3.54)

is tangent to S at a.
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Figure 3.3.3 Sphere with tangent plane

For n = 2, the hyperplane described by (3.3.54) will be a tangent line to a curve; for
n = 3, it will be a tangent plane to a surface.

Example The set of all points S in R3 satisfying

x2 + y2 + z2 = 9

is a sphere with radius 3 centered at the origin. We will find an equation for the plane
tangent to S at (2,−1, 2). First note that S is a level surface for the function

f(x, y, z) = x2 + y2 + z2.

Now
∇f(x, y, z) = (2x, 2y, 2z),

so
∇f(2,−1, 2) = (4,−2, 4).

Thus an equation for the tangent plane is

(4,−2, 4) · (x− 2, y + 1, z − 2) = 0,

or
4x− 2y + 4z = 18.

See Figure 3.3.3.
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Problems

1. For each of the following, find the best affine approximation to the given function at
the specified point c.
(a) f(x, y) = 3x2 + 4y2 − 2, c = (2, 1)
(b) g(x, y) = y2 − x2, c = (1,−2)
(c) g(x, y) = y2 − x2, c = (0, 0)
(d) f(x, y, z) = − log(x2 + y2 + z2), c = (1, 0, 0)
(e) h(w, x, y, z) = w2 + x2 + 3y2 = 2z2, c = (1, 2,−2, 1)

2. For each of the following, find the equation of the plane tangent to the graph of f for
the given point c. Plot the graph and the tangent plane together.
(a) f(x, y) = 4x2 + y2, c = (1,−1) (b) f(x, y) =

√
9− x2 − y2, c = (2, 1)

(c) f(x, y) = 9− x2 − y2, c = (2,−2) (d) f(x, y) = 3y2 − x2, c = (1,−1)

3. Suppose A : Rn → R is the best affine approximation to f : Rn → R at c. Explain why
|∇f(c) · h| is a good approximation for |f(c + h)− f(c)| when ‖h‖ is small. That is,
explain why |∇f(c) ·h| is a good approximation for the error in approximating f(c+h)
by f(c).

4. Suppose f : R3 → R is defined by f(x, y, z) = xyz.
(a) Find the best affine approximation to f at (3, 2, 4).
(b) Suppose x, y, and z represent the length, width, and height of a box. Suppose you

measure the length to be 3±h centimeters, the width to be 2±h centimeters, and
the height to be 4± h centimeters. Use the best affine approximation from (a) to
approximate the maximum error you would make in computing the volume of the
box from these measurements.

5. A metal plate is heated so that its temperature at a point (x, y) is

T (x, y) = 50y2e−
1
5 (x2+y2).

A bug moves along the ellipse parametrized by

α(t) = (cos(t), 2 sin(t)).

Find the rate of change of temperature for the bug at times t = 0, t = π
4 , and t = π

2 .

6. Let x, y, and z be the length, width, and height, respectively, of a box. Suppose the
box is increasing in size so that when x = 3 centimeters, y = 2 centimeters, and z = 5
centimeters, the length is increasing at rate of 2 centimeters per second, the width at a
rate of 4 centimeters per second, and the height at a rate of 3 centimeters per second.
(a) Find the rate of change of the volume of the box at this time.
(b) Find the rate of change of the length of the diagonal of the box at this time.
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7. Suppose w = − log(x2 + y2 + z2) and (x, y, z) = (4t, sin(t), cos(t). Find

dw

dt

∣∣∣
t= π

3

.

8. The kinetic energy K of an object of mass m moving in a straight line with velocity v
is

K =
1
2
mv2.

If, at time t = t0, m = 2000 kilograms, v = 50 meters per second, m is decreasing at a
rate of 2 kilograms per second, and v is increasing at a rate of 1.5 meters per second
per second, find

dK

dt

∣∣∣
t=t0

.

9. Each of the following equations specifies some curve in R2. In each case, find an
equation for the line tangent to the curve at the given point a.
(a) x2 + y2 = 5, a = (2, 1) (b) 2x2 + 4y2 = 18, a = (1,−2)
(c) y2 − x = 0, a = (4,−2) (d) y2 − x2 = 5, a = (−2, 3)

10. Each of the following equations specifies some surface in R3. In each case, find an
equation for the plane tangent to the surface at the given point a.
(a) x2 + y2 + z2 = 14, a = (2, 1,−3) (b) x2 + 3y2 + 2z2 = 9, a = (2,−1, 1)
(c) x2 + y2 − z2 = 1, a = (1, 2, 2) (d) xyz = 6, a = (1, 2, 3)

11. Suppose f : R2 → R is differentiable at (a, b), f(a, b) = c, and ∂
∂y f(a, b) 6= 0. Let C be

the level curve of f with equation f(x, y) = c. Show that

y = −

∂

∂x
f(a, b)

∂

∂y
f(a, b)

(x− a) + b

is an equation for the line tangent to C at (a, b).


