zoo Quick Reference

Gabor Grothendieck
GKX Associates Inc.

Achim Zeileis
Wirtschaftsuniversitat Wien

Ajay Shah
Ministry of Finance, New Delhi

Abstract

This vignette gives a brief overview of (some of) the functionality contained in zoo including
several nifty code snippets when dealing with (daily) financial data. For a more complete
overview of the package’s functionality and extensibility see Zeileis and Grothendieck (2005)
(contained as vignette “zoo” in the package), the manual pages and the reference card.

Keywords: irregular time series, daily data, weekly data, returns.

Read a series from a text file

To read in data in a text file, read.table() and associated functions can be used as usual with
zoo () being called subsequently. The convenience function read.zoo is a simple wrapper to these
functions that assumes the index is in the first column of the file and the remaining columns are
data.

Data in demo1l.txt, where each row looks like
23 Feb 2005(43.72
can be read in via
"%d 7b %Y")

R> inrusd <- read.zoo("demol.txt", sep = "|", format =

The format argument causes the first column to be transformed to an index of class "Date".
The data in demo2.txt look like

Daily,24 Feb 2005,2055.30,4337.00
and requires more attention because of the format of the first column.
R> tmp <- read.table("demo2.txt", sep = ",")

R> z <- zoo(tmp[, 3:4], as.Date(as.character(tmp[, 2]), format =
R> colnames(z) <- c("Nifty", "Junior")

"%d kb %Y"))

Query dates

To return all dates corresponding to a series index(z) or equivalently

R> time(z)
[1] "2005-02-10" "2005-02-11" "2005-02-14" "2005-02-15" "2005-02-17"
[6] "2005-02-18" "2005-02-21" "2005-02-22" "2005-02-23" "2005-02-24"
[11] "2005-02-25" "2005-02-28" "2005-03-01" "2005-03-02" "2005-03-03"
[16] "2005-03-04" "2005-03-07" "2005-03-08" "2005-03-09" "2005-03-10"

can be used. The first and last date can be obtained by

2 zoo Quick Reference

R> start(z)
[1] "2005-02-10"
R> end(inrusd)

[1] "2005-03-10"

Convert back into a plain matrix

To strip off the dates and just return a plain vector/matrix coredata can be used

R> plain <- coredata(z)
R> str(plain)

num [1:20, 1:2] 2063 2082 2098 2090 2062 ...
- attr(*, "dimnames")=List of 2

..$: chr [1:20] "im non n3n nw4n

..$: chr [1:2] "Nifty" "Junior"

Union and intersection

Unions and intersections of series can be computed by merge. The intersection are those days
where both series have time points:

R> m <- merge(inrusd, z, all = FALSE)

whereas the union uses all dates and fills the gaps where one series has a time point but the other
does not with NAs (by default):

R> m <- merge(inrusd, z)

cbind(inrusd, z) is almost equivalent to the merge call, but may lead to inferior naming in some
situations hence merge is preferred

To combine a series with its lag, use

R> merge(inrusd, lag(inrusd, -1))

inrusd lag(inrusd, -1)

2005-02-10 43.78 NA
2005-02-11 43.79 43.78
2005-02-12 NA 43.79
2005-02-14 43.72 NA
2005-02-15 43.76 43.72
2005-02-16 43.82 43.76
2005-02-17 43.74 43.82
2005-02-18 43.84 43.74
2005-02-19 NA 43.84
2005-02-21 43.82 NA
2005-02-22 43.72 43.82
2005-02-23 43.72 43.72
2005-02-24 43.70 43.72

2005-02-25 43.69 43.70

2005-02-26
2005-02-28
2005-03-01
2005-03-02
2005-03-03
2005-03-04
2005-03-05
2005-03-07
2005-03-08
2005-03-09
2005-03-10
2005-03-11

43.
43.
43.
43.
43.

43.

43.
43.

NA
64
72
70
65
71
NA
69
NA
67
58
NA

Visualization

By default, the plot

R> plot(m)

inrusd

Nifty

Junior

43.60 43.65 43.70 43.75 43.80 43.85

2040 2080 2120 2160

4600

4500

4400

4300

Ajay Shah, Achim Zeileis, Gabor Grothendieck

method generates a graph for each series in m

43.69

43.64
43.72
43.70
43.65
43.71

43.69

43.67

Feb 11

T
Feb 16

T
Feb 21

T
Feb 26

Index

but several series can also be plotted in a single window.

T
Mar 03

Mar 08

R> plot(m[, 2:3], plot.type
+ lwd =

2)

m[, 2:3]

3000 4000

2000

zoo Quick Reference

= "single", col = c("red", "blue"),

—

Feb 11

I I I
Feb16 Feb2l1 Feb26

Index

Select (a few) observations

Selections can be made for a range of dates of interest

R> window(z, start

2005-02-15
2005-02-17
2005-02-18
2005-02-21
2005-02-22
2005-02-23
2005-02-24
2005-02-25
2005-02-28

Nifty

2089
2061
2055
2043
2058

2057.
.30
.90
.25

2055
2060
2103

.95
.90
.55
.20
.40

10

= as.Date("2005-02-15"), end =

Junior

4367

4262

4346
4337
4305

.25
4320.
4318.
.25
4326.
.00
.00
.75
4388.

15
15

10

20

and also just for a single date

R> m[as.Date("2005-03-10")]

Handle missing data

inrusd Nifty Junior
2005-03-10 43.58 2167.4 4648.05

I I
Mar 03 Mar 08

as.Date ("2005-02-28"))

Various methods for dealing with NAs are available, including linear interpolation

R> interpolated <- na.approx(m)

‘last observation carried forward’,

R> m <- na.locf(m)

R>m

Ajay Shah, Achim Zeileis, Gabor Grothendieck

inrusd Nifty Junior
2005-02-10 43.78 2063.35 4379.20
2005-02-11 43.79 2082.05 4382.90
2005-02-14 43.72 2098.25 4391.15
2005-02-15 43.76 2089.95 4367.25
2005-02-16 43.82 2089.95 4367.25
2005-02-17 43.74 2061.90 4320.15
2005-02-18 43.84 2055.55 4318.15
2005-02-21 43.82 2043.20 4262.25
2005-02-22 43.72 2058.40 4326.10
2005-02-23 43.72 2057.10 4346.00
2005-02-24 43.70 2055.30 4337.00
2005-02-25 43.69 2060.90 4305.75
2005-02-28 43.64 2103.25 4388.20
2005-03-01 43.72 2084.40 4382.25
2005-03-02 43.70 2093.25 4470.00
2005-03-03 43.65 2128.85 4515.80
2005-03-04 43.71 2148.15 4549.55
2005-03-07 43.69 2160.10 4618.05
2005-03-08 43.69 2168.95 4666.70
2005-03-09 43.67 2160.80 4623.85
2005-03-10 43.58 2167.40 4648.05

and others.

Prices and returns

To compute log-difference returns in %, the following convenience function is defined
R> prices2returns <- function(x) 100 * diff(log(x))

which can be used to convert all columns (of prices) into returns.

R> r <- prices2returns(m)

A 10-day rolling window standard deviations (for all columns) can be computed by

R> rapply(r, width = 10, FUN = sd)

inrusd Nifty Junior
2005-02-18 0.1484024 0.6827704 0.7022275
2005-02-22 0.1497484 0.6168169 0.9586918
2005-02-23 0.1516702 0.8414873 0.9659141
2005-02-24 0.1517071 0.8838981 0.9710362
2005-02-25 0.1389399 0.7149261 0.8474269
2005-03-01 0.1160404 0.7217292 0.9557652
2005-03-02 0.1117103 0.7051424 0.8886226

To go from a daily series to the series of just the last-traded-day of each month aggregate can be
used

R> prices2returns(aggregate(m, as.yearmon, tail, 1))

inrusd Nifty Junior
Mar 2005 -0.1375831 3.004453 5.752866

6 zoo Quick Reference

Analogously, the series can be aggregated to the last-traded-day of each week employing a conve-
nience function nextfri that computes for each "Date" the next friday.

R> nextfri <- function(x) 7 * ceiling(as.numeric(x - 1)/7) + as.Date(1)
R> prices2returns(aggregate(na.locf(m), nextfri, tail, 1))

inrusd Nifty Junior
2005-02-18 0.11411618 -1.2809533 -1.4883536
2005-02-25 -0.34273997 0.2599329 -0.2875731
2005-03-04 0.04576659 4.1464226 5.5076988
2005-03-11 -0.29785794 0.8921286 2.1419450

Query Yahoo! Finance

When connected to the internet, Yahoo! Finance can be easily queried using the get.hist.quote
function in

R> library("tseries")

From version 0.9-30 on, get.hist.quote by default returns "zoo" series with a "Date" attribute
(in previous versions these had to be transformed from "ts" ‘by hand’).

A daily series can be obtained by:

R> sunw <- get.hist.quote(instrument = "SUNW", start = "2004-01-01",
+ end = "2004-12-31")

A monthly series can be obtained and transformed by

R> sunw2 <- get.hist.quote(instrument "SUNW", start = "2004-01-01",
+ end = "2004-12-31", compression = "m", quote = "Close")

Here, "yearmon" dates might be even more useful:

R> time(sunw2) <- as.yearmon (time (sunw2))

The same series can equivalently be computed from the daily series via
R> sunw3 <- aggregate(sunw[, "Close"], as.yearmon, tail, 1)
The corresponding returns can be computed via

R> r <- prices2returns (sunw3)

where r is still a "zoo" series.

Query Oanda

Similarly you can obtain historical exchange rates from http://www.oanda.com/ using get.hist.quote.

A daily series of EUR/USD exchange rates can be queried by

R> eur.usd <- get.hist.quote(instrument = "EUR/USD", provider = "oanda",
+ start = "2004-01-01", end = "2004-12-31")

This contains the exchange rates for every day in 2004. However, it is common practice in many
situations to exclude the observations from weekends. To do so, we write a little convenience
function which can determine for a vector of "Date" observations whether it is a weekend or not

http://www.oanda.com/

Ajay Shah, Achim Zeileis, Gabor Grothendieck

R> is.weekend <- function(x) ((as.numeric(x) - 2)%%7) < 2

Based on this we can omit all observations from weekends

R> eur.usd <- eur.usd[!is.weekend(time (eur.usd))]

The function is.weekend introduced above exploits the fact that a "Date" is essentially the

number of days since 1970-01-01, a Thursday. A mor intelligible function which yields identical
results could be based on the "POSIX1t" class

R> is.weekend <- function(x) {

+ x <- as.POSIX1t(x)
+ x$wday > 5 | x$wday < 1
+ }

References

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time Series.”
Journal of Statistical Software, 14(6), 1-27. URL http://www.jstatsoft.org/v14/i06/.

http://www.jstatsoft.org/v14/i06/

	Read a series from a text file
	Query dates
	Convert back into a plain matrix
	Union and intersection
	Visualization
	Select (a few) observations
	Handle missing data
	Prices and returns
	Query Yahoo! Finance
	Query Oanda

