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1 Description

The multiplicity problem arises when several inferences are considered simulta-

neously as a group. If each inference has a 5% error rate, then the error rate

over the entire group can be much higher than 5%. This article shows practical

examples of multiple comparisons procedures that control the error of making

any incorrect inference.

The multcomp package for the R statistical environment allows for multiple

comparisons of parameters whose estimates are generally correlated, including

comparisons of k groups in general linear models. The package has many com-

mon multiple comparison procedures “hard-coded”, including Dunnett, Tukey,

sequential pairwise contrasts, comparisons with the average, changepoint anal-

ysis, Williams’, Marcus’, McDermott’s, and tetrad contrasts. In addition, a free

input interface for the contrast matrix allows for more general comparisons.

The comparisons themselves are not restricted to balanced or simple designs.

Instead, the package is designed to provide general multiple comparisons, thus

allowing for covariates, nested effects, correlated means, likelihood-based esti-

mates, and missing values. For the homoscedastic normal linear models, the

functions in the package account for the correlations between test statistics by

using the exact multivariate t-distribution. The resulting procedures are there-

fore more powerful than the Bonferroni and Holm methods; adjusted p-values for
∗This document is based on an article published in R News
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these methods are reported for reference. For more general models, the program

accounts for correlations using the asymptotic multivariate normal distribution;

examples include multiple comparisons based on rank transformations, logistic

regression, GEEs, and proportional hazards models. In the asymptotic case,

the user must supply the estimates, the asymptotic covariance matrix, and the

contrast matrix.

Basically, the package provides two functions. The first, simint, computes

confidence intervals for the common single-step procedures. This approach is

uniformly improved by the second function (simtest), which utilizes logical

constraints and is closely related to closed testing. However, no confidence

intervals are available for the simtest function. For testing and validation

purposes, some examples from Westfall et al. (1999) are included in the package.

2 Details

Assume the general linear model

Y = Xβ + ε,

where Y is the n× 1 observation vector, X is the fixed and known n× p design

matrix, β is the fixed and unknown p×1 parameter vector and ε is the random,

unobservable n × 1 error vector, distributed as Nn(0, σ2In). We assume the

usual estimates

β̂ = (XtX)−XtY

and

σ̂2 = (Y −Xβ̂)t(Y −Xβ̂)/ν,

where ν = n − rank(X). Our focus is on multiple comparisons for parameters

of the general form ctβ. Its variance is given through

Var(ctβ̂) = σ̂2ct(XtX)−c.
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In simultaneous inferences we are faced with a given family of estimable

parameters {ct
1β, . . . , ct

kβ}. We thus use the pivotal test statistics

Ti =
ct

iβ̂ − ct
iβ

σ̂
√

ct
i(XtX)−ci

.

For a general account on multiple comparison procedures we refer to Hochberg

and Tamhane (1987). The joint distribution of {T1, . . . , Tk} is multivariate t

with degrees of freedom ν and correlation matrix R = DC(XtX)−CtD, where

Ct = (c1, . . . , ck) and D = diag(ct
i(X

tX)−ci)−1/2. In the asymptotic case ν →

∞ or if σ is known, the corresponding limiting multivariate normal distribution

holds. The numerical evaluation of the multivariate t and normal distribution

is available with the R package mvtnorm, see Hothorn et al. (2001).

Note that the contrast matrix C is defined in a slightly different way as usual

in S. The contrasts function assumes a matrix S defining a set of independent

linear combinations of the dummy variables coding the factor levels whereas C

defines linear combinations, maybe dependent, of the parameter vector β. The

following connection can be established:

Cβ̂ = CX+y

= (XC+)+y = (XS)+y.

Therefore, the Moore-Penrose-Inverse C+ (or any other G-inverse) of the con-

trast matrices offered by the contrMat function can be passed to the contrasts

function.

The function simint provides simultaneous confidence intervals for the es-

timable functions ct
iβ in the (two-sided) form[

ct
iβ̂ − c1−ασ̂

√
ct

i(XtX)−ci; ct
iβ̂ + c1−ασ̂

√
ct

i(XtX)−ci

]
,

where c1−α is the critical value at level 1−α, as derived under the distributional

assumptions above. If lower or upper tailed tests are used, the corresponding

interval bounds are set to −∞ and ∞, respectively.

The second function simtest provides more powerful test decisions than

simint yet it does not provide simultaneous confidence intervals. It uses the
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stepwise methods of Westfall (1997), which take the logical constraints between

the hypotheses into account and which are closely related to the closed testing

principle of Marcus et al. (1976). In addition, the stochastic dependencies of the

test statistics are incorporated, thus allowing imbalance, covariates and more

general models. Again, any collection of linear combinations of the estimable

parameters is allowed, not just pairwise comparisons. We refer to Westfall (1997)

for the algebraic and algorithmic details.

3 Example

We illustrate some of the capabilities of the multcomp package using the recov-

ery dataset. Three different heating blankets b1, b2, b3 for post-surgery treat-

ment are compared to a standard blanket b0. The variable of interest in this

simple one-way layout was recovery time in minutes of patients allocated ran-

domly to one of the four treatments. The standard approach for comparing

several treatments against a control is the many-to-one test of Dunnett (1955).

The Dunnett test is one of the “hard-coded” procedures available for one-factor

models in multcomp. To obtain simultaneous confidence intervals for the com-

parisons βi − β1 on simply calls:

>library(multcomp)

Loading required package: mvtnorm

>data(recovery)

>Dcirec <- simint(minutes ~ blanket, data = recovery,

+ conf.level = 0.9, alternative = "less")

>print(Dcirec)

Simultaneous confidence intervals: Dunnett

contrasts

90 % confidence intervals

Estimate -- 90 %
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blanketb1-blanketb0 -2.133 -Inf 0.823

blanketb2-blanketb0 -7.467 -Inf -4.511

blanketb3-blanketb0 -1.667 -Inf -0.036

Thus, blankets b2 and b3 lead to significant lower recovery times in comparison

to the standard b0, since the respective upper confidence bounds are less than 0.

In particular, the output above indicates that at the designated confidence level

of 90% the average recovery time for b2 is more than 7 minutes shorter than it

is for b0.

A second way to obtain the same results is to define the contrast matrix C

explicitly:

>C <- matrix(c(0, 0, 0, -1, -1, -1, 1, 0, 0, 0,

+ 1, 0, 0, 0, 1), nc = 5)

>rownames(C) <- paste("C", 1:nrow(C), sep = "")

>Ccirec <- simint(minutes ~ blanket, data = recovery,

+ conf.level = 0.9, alternative = "less", eps = 1e-04,

+ cmatrix = C)

>print(Ccirec)

Simultaneous confidence intervals: user-defined

contrasts

90 % confidence intervals

Estimate -- 90 %

C1 -2.1333 -Inf 0.8225

C2 -7.4667 -Inf -4.5108

C3 -1.6667 -Inf -0.0360

The first column of C stands for the intercept β0, the remaining columns are

reserved for the 4 levels β1, . . . , β4 of the single factor. Each row defines a partic-

ular linear combination ct
iβ. Note that the eps argument specifies the accuracy

of the numerical results (see pmvt in package mvtnorm for more details). This
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is the reason why the confidence bounds are now printed with four significant

digits instead of the former three digits.

More detailed output is available by using the summary method:

>summary(Ccirec)

Simultaneous 90% confidence intervals: user-defined

contrasts

user-defined contrasts for factor blanket

Contrast matrix:

(Intercept) blanketb0 blanketb1 blanketb2 blanketb3

C1 0 -1 1 0 0

C2 0 -1 0 1 0

C3 0 -1 0 0 1

Absolute Error Tolerance: 1e-04

90 % quantile: 1.8431

Coefficients:

Estimate -- 90 % t value Std.Err. p raw p Bonf

C1 -2.1333 -Inf 0.8225 -1.3302 1.6038 0.0958 0.2874

C2 -7.4667 -Inf -4.5108 -4.6556 1.6038 0.0000 0.0001

C3 -1.6667 -Inf -0.0360 -1.8837 0.8848 0.0337 0.1012

p adj

C1 0.2412

C2 0.0001

C3 0.0924

Note that column names have been added to the contrast matrix, i.e. the names of the

raw parameters. It is wise to check if the names correspond to the correct column since

the columns of the design matrix may have been interchanged. This output prints

the user defined contrast matrix C and the quantile c1−α. In addition, simulta-
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neous confidence intervals, the estimates ct
iβ̂ and their standard errors are given

as well as the raw p-values (computed from the marginal t distributions) and

multiplicity adjusted p-values (using either the multivariate t distribution or the

Bonferroni correction). The simultaneous confidence intervals and the adjusted

p-values based on the multivariate t distribution are compatible in the sense

that if padj < 0.05, then the associated confidence interval does not contain the

0.

By default, the lexicographically smallest factor level is used as baseline, this

can be altered by using the base argument passed to contrMat:

>simint(minutes ~ blanket, data = recovery, conf.level = 0.9,

+ alternative = "less", base = 2)

Simultaneous confidence intervals: Dunnett

contrasts

Call:

simint.formula(formula = minutes ~ blanket, data = recovery,

conf.level = 0.9, alternative = "less", base = 2)

90 % confidence intervals

Estimate -- 90 %

blanketb0-blanketb1 2.133 -Inf 4.824

blanketb2-blanketb1 -5.333 -Inf -1.785

blanketb3-blanketb1 0.467 -Inf 3.215

A more powerful approach is available using the simtest function. The

call remains essentially the same, also no simultaneous confidence intervals are

available:

>Ctrec <- simtest(minutes ~ blanket, data = recovery,

+ conf.level = 0.9, alternative = "less", eps = 1e-04,

+ cmatrix = C)

>summary(Ctrec)

7



Simultaneous tests: user-defined contrasts

user-defined contrasts for factor blanket

Contrast matrix:

(Intercept) blanketb0 blanketb1 blanketb2 blanketb3

C1 0 -1 1 0 0

C2 0 -1 0 1 0

C3 0 -1 0 0 1

Absolute Error Tolerance: 1e-04

Coefficients:

Estimate t value Std.Err. p raw p Bonf p adj

C2 -7.4667 -4.6556 1.6038 0.0000 0.0001 0.0001

C3 -1.6667 -1.8837 1.6038 0.0337 0.0675 0.0640

C1 -2.1333 -1.3302 0.8848 0.0958 0.0958 0.0958

It transpires that the adjusted p-values are indeed uniformly lower in comparison

to those from simint.

A final example call illustrates the use of the multcomp package, if the esti-

mates β̂i and their covariances are passed by hand. In such cases, the core func-

tions csimint and csimtest have to be called without using the sim{int,test}

interfaces. The call

>parm <- c(14.8, 12.6667, 7.3333, 13.1333)

>N <- c(20, 3, 3, 15)

>contrast <- contrMat(N, type = "Dunnett")

>nu <- 37

>mse <- 6.7099

>covm <- mse * diag(1/N)

>csimint(estpar = parm, df = as.integer(nu), covm = covm,

+ cmatrix = contrast, conf.level = 0.9, alternative = "less")
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Simultaneous confidence intervals: user-defined

contrasts

90 % confidence intervals

Estimate -- 90 %

2-1 -2.133 -Inf 0.823

3-1 -7.467 -Inf -4.511

4-1 -1.667 -Inf -0.036

yields the same result as the first call above. The sample size vector N and

the mean square error mse are only required for a convenient computation of

the covariance matrix. Note that the contrast matrix can either be entered by

hand or by using the availability of standard contrast matrices in the contrMat

function.

The generic simint implements methods for linear models and generalized

linear models. Simultaneous confidence intervals for a subset of parameters of a

linear model, given by an integer or character vector argument psubset or via

a contrast matrix cmatrix, are computed as follows.

>require(MASS)

Loading required package: MASS

[1] TRUE

>data(anorexia)

>lmod <- lm(Postwt ~ Prewt + Treat, data = anorexia)

>confint(lmod)

2.5 % 97.5 %

(Intercept) 23.0498681 76.4923499

Prewt 0.1128268 0.7560955

TreatCont -7.8754712 -0.3186599

TreatFT 0.3060571 8.8200682

>simint(lmod, psubset = 2:4)
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Simultaneous confidence intervals: model contrasts

95 % confidence intervals

Estimate 2.5 % 97.5 %

Prewt 0.434 0.042 0.827

TreatCont -4.097 -8.709 0.514

TreatFT 4.563 -0.633 9.759

>simint(lmod, cmatrix = cbind(0, diag(3)))

Simultaneous confidence intervals: model contrasts

95 % confidence intervals

Estimate 2.5 % 97.5 %

C1 0.434 0.042 0.827

C2 -4.097 -8.709 0.515

C3 4.563 -0.633 9.759

And for a generalized linear model (using the same example as above):

>glmod <- glm(Postwt ~ Prewt + Treat, data = anorexia,

+ family = gaussian)

>confint(glmod)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 23.5253133 76.0169047

Prewt 0.1185495 0.7503728

TreatCont -7.8082428 -0.3858882

TreatFT 0.3818011 8.7443242

>simint(glmod, psubset = 2:4)

Simultaneous confidence intervals: model contrasts

95 % confidence intervals
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Estimate 2.5 % 97.5 %

Prewt 0.434 0.042 0.827

TreatCont -4.097 -8.708 0.514

TreatFT 4.563 -0.632 9.758

Just for illustrative purposes we compute many–to–one confidence intervals

by passing the contrast matrix to lm directly:

>require(MASS)

[1] TRUE

>data(anorexia)

>lmod <- lm(Postwt ~ Prewt + Treat, data = anorexia,

+ contrasts = list(Treat = mginv(contrMat(table(anorexia$Treat)))))

>simint(lmod, psubset = 3:4)

Simultaneous confidence intervals: model contrasts

95 % confidence intervals

Estimate 2.5 % 97.5 %

TreatCont-CBT -4.097 -8.392 0.198

TreatFT-CBT 4.563 -0.276 9.402

>simint(Postwt ~ Prewt + Treat, data = anorexia)

Simultaneous confidence intervals: Dunnett

contrasts

Call:

simint.formula(formula = Postwt ~ Prewt + Treat, data = anorexia)

95 % confidence intervals

Estimate 2.5 % 97.5 %

TreatCont-TreatCBT -4.097 -8.392 0.198

TreatFT-TreatCBT 4.563 -0.276 9.402
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Dunnett contrasts

90 % one−sided confidence intervals
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Figure 1: A graphical representation of one-sided Dunnett confidence intervals.

The intervals are plotted as horizontal lines where the limits of the intervals are

given by round brackets and the estimates by a point.

4 Graphical Representation

The method plot.hmtest is available for a graphical inspectation of the si-

multaneous confidence intervals. For each contrast, the confidence interval is

plotted, for example plot(Dcirec) can be used for plotting the one-sided Dun-

nett confidence intervals for the recovery example from the first code snippet.

5 Conclusion

This article addressed the application of multiple comparisons using the mult-

comp package. The present methods cover several standard test procedures and

allow for user specified type of comparisons. Also the discussion has been de-

voted to general linear models, the package is also applicable to more general

linear and nonlinear mixed models as long as the covariances between the esti-

mates are known.
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Currently, the quantiles of the multivariate t or normal distribution are com-

puted using uniroot on the p-value functions. This is time consuming and will

be improved in future versions of the mvtnorm package.

We would like to thank Doug Bates for corrections and suggestions improving

the readability.
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