Lecture 9: Limits

Dan Sloughter
Furman University
Mathematics 39

March 30, 2004

9.1 Limit of a function

Definition 9.1. Suppose $S \subset \mathbb{C}, f: S \rightarrow \mathbb{C}$, and z_{0} is an accumulation point of S. We say that the limit of $f(z)$ as z approaches z_{0} is w_{0} if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|f(z)-w_{0}\right|<\epsilon
$$

whenever $z \in S$ and

$$
0<\left|z-z_{0}\right|<\delta
$$

We write either $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ or $f(z) \rightarrow w_{0}$ as $z \rightarrow z_{0}$.
Equivalently, the definition says that given any ϵ neighborhood V of w_{0}, there exists a deleted δ neighborhood U of z_{0} such that $f(z) \in V$ whenever $z \in U \cap S$. The assumption that z_{0} is an accumulation point of S guarantees that $U \cap S \neq \emptyset$.

Note that if S is a region, then z_{0} may be any point either in S or in the boundary of S.

Proposition 9.1. Suppose $S \subset \mathbb{C}$ and $f: S \rightarrow \mathbb{C}$. If

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

and

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{1},
$$

then $w_{0}=w_{1}$.

Proof. Suppose $w_{0} \neq w_{1}$ and let

$$
\epsilon=\frac{\left|w_{0}-w_{1}\right|}{2} .
$$

Then $\epsilon>0$, so there exists $\delta_{1}>0$ such that

$$
\left|f(z)-w_{0}\right|<\epsilon
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$ and there exists $\delta_{2}>0$ such that

$$
\left|f(z)-w_{1}\right|<\epsilon
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{2}$. Let δ be the smaller of δ_{1} and δ_{2}. Then for $z \in S$ with $0<\left|z-z_{0}\right|<\delta$,

$$
\left|w_{0}-w_{1}\right|=\left|\left(f(z)-w_{1}\right)-\left(f(z)-w_{0}\right)\right| \leq\left|f(z)-w_{1}\right|+\left|f(z)-w_{0}\right|<2 \epsilon
$$

contradicting the choice of ϵ.
Example 9.1. Suppose $c \in \mathbb{C}$ and define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=c$. We will show that, for any $z_{0} \in \mathbb{C}$,

$$
\lim _{z \rightarrow z_{0}} f(z)=c
$$

Given $\epsilon>0$, we need to find $\delta>0$ such that

$$
|f(z)-c|<\epsilon
$$

whenever

$$
0<\left|z-z_{0}\right|<\delta
$$

Since $|f(z)-c|=|c-c|=0$ for all z, clearly any value of δ will work.
Example 9.2. Define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=z$. We will show that, for any $z_{0} \in \mathbb{C}$,

$$
\lim _{z \rightarrow z_{0}} f(z)=z_{0}
$$

Given $\epsilon>0$, we need to find $\delta>0$ such that

$$
\left|f(z)-z_{0}\right|<\epsilon
$$

whenever

$$
0<\left|z-z_{0}\right|<\delta
$$

Since $\left|f(z)-z_{0}\right|=\left|z-z_{0}\right|$ for all z, we will obtain the desired result by setting $\delta=\epsilon$.

9.2 Properties of limits

Proposition 9.2. Suppose $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$. If

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \text { and } \lim _{z \rightarrow z_{0}} g(z)=w_{1}
$$

then

$$
\lim _{z \rightarrow z_{0}}(f(z)+g(z))=w_{0}+w_{1}
$$

Proof. Given $\epsilon>0$, there exists $\delta_{1}>0$ such that

$$
\left|f(z)-w_{0}\right|<\frac{\epsilon}{2}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$ and there exists $\delta_{2}>0$ such that

$$
\left|g(z)-w_{1}\right|<\frac{\epsilon}{2}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{2}$. Let δ be the smaller of δ_{1} and δ_{2}. Then

$$
\left|(f(z)+g(z))-\left(w_{0}+w_{1}\right)\right| \leq\left|f(z)-w_{0}\right|+\left|g(z)-w_{1}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta$. Hence

$$
\lim _{z \rightarrow z_{0}}(f(z)+g(z))=w_{0}+w_{1}
$$

Proposition 9.3. Suppose $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$. If

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \text { and } \lim _{z \rightarrow z_{0}} g(z)=w_{1}
$$

then

$$
\lim _{z \rightarrow z_{0}}(f(z) g(z))=w_{0} w_{1}
$$

Proof. We first note that

$$
\begin{aligned}
\left|f(z) g(z)-w_{0} w_{1}\right| & =\left|f(z) g(z)-w_{0} g(z)+w_{0} g(z)-w_{0} w_{1}\right| \\
& =\left|g(z)\left(f(z)-w_{0}\right)+w_{0}\left(g(z)-w_{1}\right)\right|
\end{aligned}
$$

$$
\leq|g(z)|\left|f(z)-w_{0}\right|+\left|w_{0}\right|\left|g(z)-w_{1}\right| .
$$

Now we may choose $\delta_{1}>0$ such that

$$
\left|g(z)-w_{1}\right|<1
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$. It follows that

$$
|g(z)|=\left|\left(g(z)-w_{1}\right)+w_{1}\right| \leq\left|g(z)-w_{1}\right|+\left|w_{1}\right|<1+\left|w_{1}\right|
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$. Moreover, we may choose $\delta_{2}>0$ such that

$$
\left|f(z)-w_{0}\right|<\frac{\epsilon}{2\left(1+\left|w_{1}\right|\right)}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{2}$ and we may choose $\delta_{3}>0$ such that

$$
\left|g(z)-w_{1}\right|<\frac{\epsilon}{2\left(1+\left|w_{0}\right|\right)}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{3}$. Now let δ be the smaller of δ_{1}, δ_{2}, and δ_{3}. If $z \in S$ and $0<\left|z-z_{0}\right|<\delta$, then

$$
|g(z)|\left|f(z)-w_{0}\right|<\left(1+\left|w_{1}\right|\right) \frac{\epsilon}{2\left(1+\left|w_{1}\right|\right)}=\frac{\epsilon}{2}
$$

and

$$
\left|w_{0}\right|\left|g(z)-w_{1}\right|<\left(1+\left|w_{0}\right|\right) \frac{\epsilon}{2\left(1+\left|w_{0}\right|\right)}=\frac{\epsilon}{2} .
$$

Hence

$$
\left|f(z) g(z)-w_{0} w_{1}\right|<\epsilon
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta$, and so

$$
\lim _{z \rightarrow z_{0}} f(z) g(z)=w_{0} w_{1} .
$$

Proposition 9.4. Suppose $f: S \rightarrow \mathbb{C}$ and $g: S \rightarrow \mathbb{C}$. If

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \text { and } \lim _{z \rightarrow z_{0}} g(z)=w_{1}
$$

and $w_{1} \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{w_{0}}{w_{1}}
$$

Proof. We first note that

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-\frac{w_{0}}{w_{1}}\right| & =\left|\frac{w_{1} f(z)-w_{0} g(z)}{w_{1} g(z)}\right| \\
& =\frac{\left|w_{1} f(z)-w_{0} w_{1}+w_{0} w_{1}-w_{0} g(z)\right|}{\left|w_{1}\right||g(z)|} \\
& \leq \frac{\left|w_{1}\right|\left|f(z)-w_{0}\right|+\left|w_{0}\right|\left|g(z)-w_{1}\right|}{\left|w_{1}\right||g(z)|}
\end{aligned}
$$

If we choose δ_{1} so that

$$
\left|g(z)-w_{1}\right|<\frac{\left|w_{1}\right|}{2}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$, then
$|g(z)|=\left|\left(g(z)-w_{1}\right)+w_{1}\right| \geq\left|\left|w_{1}\right|-\left|g(z)-w_{1}\right|\right|=\left|w_{1}\right|-\left|g(z)-w_{1}\right|>\frac{\left|w_{1}\right|}{2}$
whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{1}$. It follows that for such values of z,

$$
\left|\frac{f(z)}{g(z)}-\frac{w_{0}}{w_{1}}\right|<\frac{2}{\left|w_{1}\right|}\left|f(z)-w_{0}\right|+\frac{2\left|w_{0}\right|}{\left|w_{1}\right|^{2}}\left|g(z)-w_{1}\right| .
$$

Now choose $\delta_{2}>0$ such that

$$
\left|f(z)-w_{0}\right|<\frac{\left|w_{1}\right| \epsilon}{4}
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta_{2}$ and, if $\left|w_{0}\right| \neq 0, \delta_{3}>0$ such that

$$
\left|g(z)-w_{1}\right|<\frac{\left|w_{1}\right|^{2} \epsilon}{4\left|w_{0}\right|}
$$

whenever $0<\left|z-z_{0}\right|<\delta_{3}$. If $\left|w_{0}\right|=0$, let $\delta_{3}=1$. It now follows that if δ is the smallest of δ_{1}, δ_{2}, and δ_{3}, then

$$
\left|\frac{f(z)}{g(z)}-\frac{w_{0}}{w_{1}}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

and so

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{w_{0}}{w_{1}}
$$

Proposition 9.5. If P is a polynomial, then for any $z_{0} \in \mathbb{C}$,

$$
\lim _{z \rightarrow z_{0}} P(z)=P\left(z_{0}\right)
$$

If R is a rational function and $R\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} R(z)=R\left(z_{0}\right)
$$

Proof. The result is an immediate consequence of the previous propositions combined with the limits

$$
\lim _{z \rightarrow z_{0}} c=c
$$

for any constant $c \in \mathbb{C}$ and

$$
\lim _{z \rightarrow z_{0}} z=z_{0}
$$

Example 9.3. We may now compute

$$
\lim _{z \rightarrow 2 i} \frac{z^{2}+1}{z^{3}+4 i}=\frac{(2 i)^{2}+1}{(2 i)^{3}+4 i}=\frac{-3}{-4 i}=-\frac{3}{4} i .
$$

Proposition 9.6. Suppose $S \subset \mathbb{C}, f: S \rightarrow \mathbb{C}, f(x+i y)=u(x, y)+i v(x, y)$, $z_{0}=x_{0}+i y_{0}$, and $w_{0}=u_{0}+i v_{0}$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0}
$$

and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0} .
$$

Proof. One direction follows from our earlier results: if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0}
$$

and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
$$

then

$$
\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} u(z)+i \lim _{z \rightarrow z_{0}} v(z)=u_{0}+i v_{0}=w_{0} .
$$

For the other direction, suppose

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

Then we may choose $\epsilon>0$ such that

$$
\left|f(z)-w_{0}\right|<\epsilon
$$

whenever $z \in S$ and $0<\left|z-z_{0}\right|<\delta$. For such z, it follows that, with $z=x+i y$,

$$
\left|u(x, y)-u_{0}\right| \leq\left|f(z)-w_{0}\right|<\epsilon
$$

and

$$
\left|v(x, y)-v_{0}\right| \leq\left|f(z)-w_{0}\right|<\epsilon
$$

Hence

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0}
$$

and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
$$

Example 9.4. Suppose $f(x+i y)=4 x y+i \sqrt{x+y}$. Then, using limit results from calculus,

$$
\lim _{z \rightarrow 5-3 i} f(z)=\lim _{(x, y) \rightarrow(5,-3)} 4 x y+i \lim _{(x, y) \rightarrow(5,-3)} \sqrt{x+y}=-60+i \sqrt{2}
$$

Example 9.5. Suppose

$$
f(z)=\frac{z}{\bar{z}} .
$$

Note that if $z=x, x \neq 0$, then

$$
f(z)=\frac{x}{x}=1
$$

whereas if $z=i y, y \neq 0$,

$$
f(z)=\frac{i y}{-i y}=-1
$$

Hence $f(z) \rightarrow 1$ as $z \rightarrow 0$ along the real-axis, while $f(z) \rightarrow-1$ as $z \rightarrow 0$ along the imaginary axis. Hence $f(z)$ does not have a limit as z approaches 0 .

