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9.1 Limit of a function

Definition 9.1. Suppose S ⊂ C, f : S → C, and z0 is an accumulation
point of S. We say that the limit of f(z) as z approaches z0 is w0 if for every
ε > 0 there exists a δ > 0 such that

|f(z)− w0| < ε

whenever z ∈ S and
0 < |z − z0| < δ.

We write either lim
z→z0

f(z) = w0 or f(z) → w0 as z → z0.

Equivalently, the definition says that given any ε neighborhood V of w0,
there exists a deleted δ neighborhood U of z0 such that f(z) ∈ V whenever
z ∈ U ∩S. The assumption that z0 is an accumulation point of S guarantees
that U ∩ S 6= ∅.

Note that if S is a region, then z0 may be any point either in S or in the
boundary of S.

Proposition 9.1. Suppose S ⊂ C and f : S → C. If

lim
z→z0

f(z) = w0

and
lim
z→z0

f(z) = w1,

then w0 = w1.
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Proof. Suppose w0 6= w1 and let

ε =
|w0 − w1|

2
.

Then ε > 0, so there exists δ1 > 0 such that

|f(z)− w0| < ε

whenever z ∈ S and 0 < |z − z0| < δ1 and there exists δ2 > 0 such that

|f(z)− w1| < ε

whenever z ∈ S and 0 < |z − z0| < δ2. Let δ be the smaller of δ1 and δ2.
Then for z ∈ S with 0 < |z − z0| < δ,

|w0 − w1| = |(f(z)− w1)− (f(z)− w0)| ≤ |f(z)− w1|+ |f(z)− w0| < 2ε,

contradicting the choice of ε.

Example 9.1. Suppose c ∈ C and define f : C → C by f(z) = c. We will
show that, for any z0 ∈ C,

lim
z→z0

f(z) = c.

Given ε > 0, we need to find δ > 0 such that

|f(z)− c| < ε

whenever
0 < |z − z0| < δ.

Since |f(z)− c| = |c− c| = 0 for all z, clearly any value of δ will work.

Example 9.2. Define f : C → C by f(z) = z. We will show that, for any
z0 ∈ C,

lim
z→z0

f(z) = z0.

Given ε > 0, we need to find δ > 0 such that

|f(z)− z0| < ε

whenever
0 < |z − z0| < δ.

Since |f(z) − z0| = |z − z0| for all z, we will obtain the desired result by
setting δ = ε.
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9.2 Properties of limits

Proposition 9.2. Suppose f : S → C and g : S → C. If

lim
z→z0

f(z) = w0 and lim
z→z0

g(z) = w1,

then
lim
z→z0

(f(z) + g(z)) = w0 + w1.

Proof. Given ε > 0, there exists δ1 > 0 such that

|f(z)− w0| <
ε

2

whenever z ∈ S and 0 < |z − z0| < δ1 and there exists δ2 > 0 such that

|g(z)− w1| <
ε

2

whenever z ∈ S and 0 < |z − z0| < δ2. Let δ be the smaller of δ1 and δ2.
Then

|(f(z) + g(z))− (w0 + w1)| ≤ |f(z)− w0|+ |g(z)− w1| <
ε

2
+

ε

2
= ε

whenever z ∈ S and 0 < |z − z0| < δ. Hence

lim
z→z0

(f(z) + g(z)) = w0 + w1.

Proposition 9.3. Suppose f : S → C and g : S → C. If

lim
z→z0

f(z) = w0 and lim
z→z0

g(z) = w1,

then
lim
z→z0

(f(z)g(z)) = w0w1.

Proof. We first note that

|f(z)g(z)− w0w1| = |f(z)g(z)− w0g(z) + w0g(z)− w0w1|
= |g(z)(f(z)− w0) + w0(g(z)− w1)|
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≤ |g(z)||f(z)− w0|+ |w0||g(z)− w1|.

Now we may choose δ1 > 0 such that

|g(z)− w1| < 1

whenever z ∈ S and 0 < |z − z0| < δ1. It follows that

|g(z)| = |(g(z)− w1) + w1| ≤ |g(z)− w1|+ |w1| < 1 + |w1|

whenever z ∈ S and 0 < |z− z0| < δ1. Moreover, we may choose δ2 > 0 such
that

|f(z)− w0| <
ε

2(1 + |w1|)
whenever z ∈ S and 0 < |z − z0| < δ2 and we may choose δ3 > 0 such that

|g(z)− w1| <
ε

2(1 + |w0|)

whenever z ∈ S and 0 < |z − z0| < δ3. Now let δ be the smaller of δ1, δ2,
and δ3. If z ∈ S and 0 < |z − z0| < δ, then

|g(z)||f(z)− w0| < (1 + |w1|)
ε

2(1 + |w1|)
=

ε

2

and
|w0||g(z)− w1| < (1 + |w0|)

ε

2(1 + |w0|)
=

ε

2
.

Hence
|f(z)g(z)− w0w1| < ε

whenever z ∈ S and 0 < |z − z0| < δ, and so

lim
z→z0

f(z)g(z) = w0w1.

Proposition 9.4. Suppose f : S → C and g : S → C. If

lim
z→z0

f(z) = w0 and lim
z→z0

g(z) = w1,

and w1 6= 0, then

lim
z→z0

f(z)

g(z)
=

w0

w1

.
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Proof. We first note that∣∣∣∣f(z)

g(z)
− w0

w1

∣∣∣∣ =

∣∣∣∣w1f(z)− w0g(z)

w1g(z)

∣∣∣∣
=
|w1f(z)− w0w1 + w0w1 − w0g(z)|

|w1||g(z)|

≤ |w1||f(z)− w0|+ |w0||g(z)− w1|
|w1||g(z)|

.

If we choose δ1 so that

|g(z)− w1| <
|w1|
2

whenever z ∈ S and 0 < |z − z0| < δ1, then

|g(z)| = |(g(z)−w1) + w1| ≥ ||w1| − |g(z)− w1|| = |w1| − |g(z)−w1| >
|w1|
2

whenever z ∈ S and 0 < |z − z0| < δ1. It follows that for such values of z,∣∣∣∣f(z)

g(z)
− w0

w1

∣∣∣∣ <
2

|w1|
|f(z)− w0|+

2|w0|
|w1|2

|g(z)− w1|.

Now choose δ2 > 0 such that

|f(z)− w0| <
|w1|ε

4

whenever z ∈ S and 0 < |z − z0| < δ2 and, if |w0| 6= 0, δ3 > 0 such that

|g(z)− w1| <
|w1|2ε
4|w0|

whenever 0 < |z − z0| < δ3. If |w0| = 0, let δ3 = 1. It now follows that if δ is
the smallest of δ1, δ2, and δ3, then∣∣∣∣f(z)

g(z)
− w0

w1

∣∣∣∣ <
ε

2
+

ε

2
= ε,

and so

lim
z→z0

f(z)

g(z)
=

w0

w1

.
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Proposition 9.5. If P is a polynomial, then for any z0 ∈ C,

lim
z→z0

P (z) = P (z0).

If R is a rational function and R(z0) 6= 0, then

lim
z→z0

R(z) = R(z0).

Proof. The result is an immediate consequence of the previous propositions
combined with the limits

lim
z→z0

c = c

for any constant c ∈ C and
lim
z→z0

z = z0.

Example 9.3. We may now compute

lim
z→2i

z2 + 1

z3 + 4i
=

(2i)2 + 1

(2i)3 + 4i
=
−3

−4i
= −3

4
i.

Proposition 9.6. Suppose S ⊂ C, f : S → C, f(x+ iy) = u(x, y)+ iv(x, y),
z0 = x0 + iy0, and w0 = u0 + iv0. Then

lim
z→z0

f(z) = w0

if and only if
lim

(x,y)→(x0,y0)
u(x, y) = u0

and
lim

(x,y)→(x0,y0)
v(x, y) = v0.

Proof. One direction follows from our earlier results: if

lim
(x,y)→(x0,y0)

u(x, y) = u0

and
lim

(x,y)→(x0,y0)
v(x, y) = v0,
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then
lim
z→z0

f(z) = lim
z→z0

u(z) + i lim
z→z0

v(z) = u0 + iv0 = w0.

For the other direction, suppose

lim
z→z0

f(z) = w0.

Then we may choose ε > 0 such that

|f(z)− w0| < ε

whenever z ∈ S and 0 < |z − z0| < δ. For such z, it follows that, with
z = x + iy,

|u(x, y)− u0| ≤ |f(z)− w0| < ε

and
|v(x, y)− v0| ≤ |f(z)− w0| < ε.

Hence
lim

(x,y)→(x0,y0)
u(x, y) = u0

and
lim

(x,y)→(x0,y0)
v(x, y) = v0.

Example 9.4. Suppose f(x+iy) = 4xy+i
√

x + y. Then, using limit results
from calculus,

lim
z→5−3i

f(z) = lim
(x,y)→(5,−3)

4xy + i lim
(x,y)→(5,−3)

√
x + y = −60 + i

√
2.

Example 9.5. Suppose

f(z) =
z

z̄
.

Note that if z = x, x 6= 0, then

f(z) =
x

x
= 1,

whereas if z = iy, y 6= 0,

f(z) =
iy

−iy
= −1.

Hence f(z) → 1 as z → 0 along the real-axis, while f(z) → −1 as z → 0
along the imaginary axis. Hence f(z) does not have a limit as z approaches
0.
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