Lecture 8: Mappings

Dan Sloughter
Furman University
Mathematics 39

March 17, 2004

8.1 Visualizing functions

Recall that the graph of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ or $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ provides a visualization of the behavior of f. However, if $S \subset \mathbb{C}$ and $f: S \rightarrow \mathbb{C}$, then the graph of f is in four-dimensional space, and so is not easily visualized. As one alternative, we may consider $w=f(z)$ as a transformation, or mapping, which takes a region in the z-plane and maps it to a region in the w-plane. If $z \in S$, we call $w=f(z)$ the image of z; for a set $T \subset S$, we call

$$
\{w \in \mathbb{C}: w=f(z) \text { for some } z \in T\}
$$

the image of T; and we call the image of S the range of f.
Example 8.1. A mapping $w=z+z_{0}$, where z_{0} is a fixed constant, is a translation. For example, the mapping $w=z+i$ shifts every point z one unit vertically, $x+i y$ going to $x+i(y+1)$.

Example 8.2. The mapping $w=z e^{i \theta}$, where θ is a fixed real number, is a rotation. For example, the mapping $w=z i=z e^{i \frac{\pi}{2}}$ is a rotation counterclockwise through an angle $\frac{\pi}{2}$, taking the point $r e^{i \theta}$ to the point $r e^{i\left(\theta+\frac{\pi}{2}\right)}$.

Example 8.3. The mapping $w=\bar{z}$ is a reflection, taking $x+i y$ and reflecting it about the real axis to $x-i y$.

8.2 The mapping $w=z^{2}$

If $z=x+i y$ and $w=z^{2}$, then

$$
w=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+2 x y i
$$

Hence $w=u+i v$ where

$$
u=x^{2}-y^{2} \text { and } v=2 x y
$$

Consider the hyperbola H in the $x y$-plane with equation $x^{2}-y^{2}=c, c>0$. On the right-hand branch of $H, x=\sqrt{y^{2}+c}$, and so

$$
v=2 y \sqrt{y^{2}+c}
$$

It follows that as (x, y) moves along the right-hand branch of H, with y going from $-\infty$ to $\infty,(u, v)$ moves upward along the vertical line $u=c$, with v going from $-\infty$ to ∞. That is, the mapping $w=z^{2}$ maps the right-hand branch of the hyperbola $x^{2}-y^{2}=c$ onto the vertical line $u=c$. On the left-hand branch of $H, x=-\sqrt{y^{2}+c}$, and so a point (x, y) on this branch is mapped to

$$
u=c \text { and } v=-2 y \sqrt{y^{2}+c}
$$

It follows that as (x, y) moves along the left-hand branch of H, with y going from ∞ to $-\infty,(u, v)$ moves upward along the vertical line $u=c$, with v going from $-\infty$ to ∞. That is, the mapping $z=w^{2}$ maps the left-hand branch of the hyperbola $x^{2}-y^{2}=c$ onto the vertical line $u=c$.

Now consider the hyperbola K in the $x y$-plane with equation $2 x y=c$, $c>0$. On the right-hand branch of K,

$$
y=\frac{c}{2 x},
$$

and so

$$
u=x^{2}-\frac{c^{2}}{4 x^{2}}
$$

Note that $u \rightarrow \infty$ as $x \rightarrow \infty$ and $u \rightarrow-\infty$ as $x \downarrow 0$. It follows that as (x, y) moves along the right-hand branch of K, with x going from 0 to $\infty,(u, v)$ moves to the right along the horizontal line $v=c$. That is, the mapping $w=z^{2}$ maps the right-hand branch of the hyperbola $2 x y=c$ onto the horizontal line $v=c$. Similarly, if as (x, y) moves along the left-hand
branch of K, with x going from 0 to $-\infty,(u, v)$ moves to the right along the horizontal line $v=c$.

It now follows from the work above that, for example, $w=z^{2}$ maps the domain

$$
\{z=x+i y \in \mathbb{C}: x>0, y>0, x y<1\}
$$

in the $x y$-plane onto the domain

$$
\{w=u+i v \in \mathbb{C}: 0<v<2\}
$$

Since $z=i y$ is mapped to $w=-y^{2}$, the positive imaginary axis is mapped to the negative real axis, and since $z=x$ is mapped to $w=x^{2}$, the positive real axis is mapped to the positive real axis. Hence $w=z^{2}$ maps the closed region

$$
\{z=x+i y \in \mathbb{C}: x \geq 0, y \geq 0, x y \leq 1\}
$$

in the $x y$-plane onto the closed region

$$
\{w=u+i v \in \mathbb{C}: 0 \leq v \leq 2\}
$$

We may also look at the mapping $w=z^{2}$ using polar coordinates. If $z=r e^{i \theta}$, then $w=r^{2} e^{i 2 \theta}$. That is, if $w=\rho e^{i \varphi}$ and $w=z^{2}$, then

$$
\rho=r^{2} \text { and } \varphi=2 \theta+2 k \pi, \text { where } k=0, \pm 1, \pm 2, \ldots
$$

In particular, this means $w=z^{2}$ maps the first quadrant of the z-plane, that is,

$$
\left\{z=r e^{i \theta}: r \geq 0,0 \leq \theta \leq \frac{\pi}{2}\right\}
$$

onto the upper half plane of w-plane, that is,

$$
\left\{w=\rho e^{i \varphi}: \rho \geq 0,0 \leq \varphi \leq \pi\right\}
$$

Similarly, $w=z^{2}$ maps

$$
\left\{z=r e^{i \theta}: r \geq 0,0 \leq \theta \leq \pi\right\}
$$

onto the entire w-plane.

8.3 The exponential mapping

Although we will not formally study the exponential function of a complex variable until later, we should expect that if $z=x+i y$, then

$$
w=e^{z}=e^{x+i y}=e^{x} e^{i y}
$$

Since we have already defined

$$
e^{i y}=\cos (y)+i \sin (y)
$$

we have

$$
e^{z}=e^{x}(\cos (y)+i \sin (y))
$$

Now if $w=\rho e^{i \varphi}$, then $w=e^{z}=e^{x} e^{i y}$ implies that

$$
\rho=e^{x} \text { and } \varphi=y+2 k \pi, \text { where } k=0, \pm 1, \pm 2, \ldots
$$

In particular, if z lies on the vertical line $x=c$, that is, $z=c+i y$, then w traverses the circle of radius e^{c} with center at the origin as y passes through every interval of length 2π. That is, $w=e^{z}$ maps vertical lines onto circles centered at the origin, with the mapping repeating a countercockwise traversal of the circle an infinite number of times as y goes from $-\infty$ to ∞.

If z lies on the horizontal line $y=c$, that is $z=x+i c$, then w lies on the ray $\varphi=c$. In fact, w traverses this entire ray as x goes from $-\infty$ to ∞.

As a consequence of the above observations, $w=e^{z}$ maps a rectangle $R=[a, b] \times[c, d]$ in the z-plane onto a circular sector

$$
\left\{w=\rho e^{i \varphi}: e^{a} \leq \rho \leq e^{b}, c \leq \varphi \leq d\right\}
$$

in the w-plane. For the infinite strip

$$
S=\{z=x+i y: 0 \leq y \leq \pi\}
$$

$w=e^{z}$ maps S onto

$$
\{w=u+i v: v \geq 0, w \neq 0\}
$$

