Lecture 6: Some Topology

Dan Sloughter
Furman University
Mathematics 39

March 16, 2004

6.1 Topological terminology

Definition 6.1. Given a complex number z_{0} and a real number $\epsilon>0$, we call the set

$$
\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\epsilon\right\}
$$

an ϵ neighborhood of z_{0} and the set

$$
\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\epsilon\right\}
$$

a deleted neighborhood of z_{0}.
Definition 6.2. If $S \subset \mathbb{C}$ and $z_{0} \in S$, we say z_{0} is an interior point of S if for some $\epsilon>0$ the ϵ neighborhood of z_{0} lies in S. If $z_{0} \notin S$, we say z_{0} is an exterior point of S if for some $\epsilon>0$ the ϵ neighborhood of z_{0} has no points in common with S. We call a point z_{0} which is neither an interior point nor an exterior a boundary point of S. We call the set of all boundary points of S the boundary of S, the set of all interior points of S the interior of S, and the set of all exterior points of S the exterior of S.

Example 6.1. Let

$$
S=\{z \in \mathbb{C}: 1<|z| \leq 2\}
$$

The interior of S is

$$
\{z \in \mathbb{C}: 1<|z|<2\}
$$

the exterior is

$$
\{z \in \mathbb{C}:|z|<1 \text { or }|z|>2\}
$$

and the boundary of S is

$$
\{z \in \mathbb{C}:|z|=1 \text { or }|z|=2\}
$$

Definition 6.3. We say a set S is open if it contains none of its boundary points and closed if contains all of its boundary points. The closure of a set S is the union of S with its boundary points.

Proposition 6.1. The closure of a set S is closed.
Proof. Let C be the closure of S and let z be a boundary point of C. We need to show that $z \in C$. If $z \in S$, then $z \in C$, so suppose $z \notin S$. If $z \notin C$, then z is not a boundary point of S, and so is in the exterior of S. Hence there exists an $\epsilon>0$ such that the ϵ neighborhood of z, call it U, does not intersect S. However, since z is a boundary point of C, there exists a boundary point of S, say w, with $w \in U$. Let $\delta=|z-w|$ and let $\gamma=\epsilon-\delta$. The γ neighborhood of w is a subset of U, but must intersect S since w is a a boundary point of S. This contradicts the choice of ϵ, and so $z \in C$ and C is closed.

Example 6.2. If

$$
S=\{z \in \mathbb{C}: 1<|z| \leq 2\}
$$

as in the previous example, then S is neither open nor closed. Moreover, the closure of S is

$$
C=\{z \in \mathbb{C}: 1 \leq|z| \leq 2\}
$$

which is closed.
Example 6.3. $S=\{z \in \mathbb{C}:|z|<1\}$ is open, while its closure $D=\{z \in \mathbb{C}$: $|z| \leq 1\}$ is closed.

Example 6.4. The set of all complex numbers \mathbb{C} is both open and closed.
Definition 6.4. We say a set S is connected if for each pair of points z_{1} and z_{2} in S there exists a sequence of points $w_{0}, w_{1}, \ldots, w_{n}$ such that $w_{0}=z_{1}$, $w_{n}=z_{2}$, and the line segment from w_{i-1} to w_{i} lies in S for $i=1,2, \ldots, n$.

Example 6.5. The annulus

$$
S=\{z \in \mathbb{C}: 1<|z|<2\}
$$

is connected, as is the disk

$$
D=\{z \in \mathbb{C}:|z|<1\}
$$

The set

$$
T=\{z \in \mathbb{C}:|z|<1 \text { or }|z-2 i|<1\}
$$

is not connected.
Definition 6.5. We call an open connected set a domain and a domain along with some, all, or none of its boundary points a region.

Example 6.6. The sets S and D in the previous example are both domains, and hence also regions. The closed disk

$$
A=\{z \in \mathbb{C}:|z| \leq 1\}
$$

is also a region.
Definition 6.6. We say a set S is bounded if for some $R>0$

$$
S \subset\{z \in \mathbb{C}:|z|<R\}
$$

If S is not bounded, we say S is unbounded.
Example 6.7. The disk $\{z \in \mathbb{C}:|z|<1\}$ is bounded, whereas the set $\{z \in \mathbb{C}:|z|>1\}$ is unbounded.

Definition 6.7. We call a point z_{0} an accumulation point of a set S if each deleted neighborhood of S contains at least one point of S.

Note that if z_{0} is an accumulation point of S and $z_{0} \notin S$, then z_{0} is a boundary point of S. Hence a closed set will contain each of it accumulation points. Conversely, if z_{0} is a boundary point of a set S and $z_{0} \notin S$, then z_{0} is an accumulation point of S. Hence a set is closed if it contains each of its accumulation points.

Proposition 6.2. A set S is closed if and only if it contains all its accumulation points.

Example 6.8. Let

$$
S=\left\{\frac{1}{n}: n=1,2,3, \ldots\right\} .
$$

Then 0 is an accumulation point of S and also a boundary point of S. On the other hand, 1 is a boundary point of S, but not an accumulation point.

Example 6.9. Let $S=\{z \in \mathbb{C}:|z|<1\}$. Then 0 is an accumulation point of of S, but not a boundary point. The points z for which $|z|=1$ are both boundary points and accumulation points.

