Lecture 46: Poles

Dan Sloughter
Furman University
Mathematics 39

May 25, 2004

46.1 Types of singular points

If z_{0} is an isolated singular point of f, then, for some $R>0$,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

for all z with $0<\left|z-z_{0}\right|<R$. We call

$$
\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

the principal part of f at z_{0}. If for some positive integer $m, b_{m} \neq 0$ and $b_{m+1}=b_{m+2}=\cdots=0$, that is,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{m} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

with $b_{m} \neq 0$, then we say z_{0} is a pole of order m. If $m=1$, we say z_{0} is a simple pole. If an infinite number of the coefficients b_{n} are nonzero, we say z_{0} is an essential singular point of f. If $b_{n}=0$ for all n, we say z_{0} is a removable singular point.

Example 46.1. Since

$$
\frac{\sin (z)}{z^{3}}=\frac{1}{z^{2}}-\frac{1}{3!}+\frac{z^{2}}{5!}-\cdots,
$$

$f(z)=\frac{\sin (z)}{z^{3}}$ has a pole of order $m=2$ at $z=0$.
Example 46.2. Since

$$
\frac{\sin (z)}{z}=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\cdots
$$

$f(z)=\frac{\sin (z)}{z}$ has a removable singular point at $z=0$.
Example 46.3. Since

$$
e^{\frac{1}{z}}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}
$$

$f(z)=e^{\frac{1}{z}}$ has an essential singular point at $z=0$.

46.2 Residues at poles

Proposition 46.1. An isolated singular point of a function f is a pole of order m if and only if there is a function φ such that φ is analytic at z_{0}, $\varphi\left(z_{0}\right) \neq 0$, and

$$
f(z)=\frac{\varphi(z)}{\left(z-z_{0}\right)^{m}}
$$

Moreover, in this case

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\varphi^{m-1}\left(z_{0}\right)}{(m-1)!}
$$

Example 46.4. If

$$
f(z)=\frac{1}{(z+1)(z-1)^{3}},
$$

then we may write

$$
f(z)=\frac{\varphi(z)}{(z-1)^{3}}
$$

where

$$
\varphi(z)=\frac{1}{z+1} .
$$

Hence $z=1$ is a pole of order $m=3$ and

$$
\operatorname{Res}_{z=1} f(z)=\frac{\varphi^{\prime \prime}(1)}{2}=\frac{1}{8},
$$

as we have seen before. For the residue at $z=-1$, we write

$$
f(z)=\frac{\varphi(z)}{z+1}
$$

where

$$
\varphi(z)=\frac{1}{(z-1)^{3}} .
$$

Hence $z=-1$ is a simple pole and we have

$$
\operatorname{Res}_{z=-1}^{\operatorname{Res}} f(z)=\varphi(-1)=-\frac{1}{8} .
$$

Example 46.5. Let

$$
f(z)=\frac{1}{z^{4}+1}=\frac{1}{\left(z-\frac{1+i}{\sqrt{2}}\right)\left(z-\frac{-1+i}{\sqrt{2}}\right)\left(z-\frac{-1-i}{\sqrt{2}}\right)\left(z-\frac{1-i}{\sqrt{2}}\right)} .
$$

Then

$$
\operatorname{Res}_{z=\frac{1+i}{\sqrt{2}}} f(z)=\frac{1}{\left(\frac{1+i}{\sqrt{2}}-\frac{-1+i}{\sqrt{2}}\right)\left(\frac{1+i}{\sqrt{2}}-\frac{-1-i}{\sqrt{2}}\right)\left(\frac{1+i}{\sqrt{2}}-\frac{1-i}{\sqrt{2}}\right)}=\frac{-1-i}{4 \sqrt{2}}
$$

and

$$
\operatorname{Res}_{z=\frac{-1+i}{\sqrt{2}}} f(z)=\frac{1}{\left(\frac{-1+i}{\sqrt{2}}-\frac{1+i}{\sqrt{2}}\right)\left(\frac{-1+i}{\sqrt{2}}-\frac{-1-i}{\sqrt{2}}\right)\left(\frac{-1+i}{\sqrt{2}}-\frac{1-i}{\sqrt{2}}\right)}=\frac{1-i}{4 \sqrt{2}}
$$

Hence if $R>1$ and C is the contour, with positive orientation, consisting of the upper half of the circle $|z|=R$ and the segment along the real axis from $-R$ to R, then

$$
\int_{C} \frac{1}{z^{4}+1} d z=2 \pi i\left(-\frac{1}{2 \sqrt{2}} i\right)=\frac{\pi}{\sqrt{2}} .
$$

Now if C_{R} is the upper half of the circle $|z|=R$, then

$$
\int_{C_{R}} \frac{1}{z^{4}+1} d z \leq \frac{1}{R^{4}-1} \cdot 2 \pi R=\frac{2 \pi R}{R^{4}+1} .
$$

Hence

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{z^{4}+1} d z=0
$$

But

$$
\frac{\pi}{\sqrt{2}}=\int_{C} \frac{1}{z^{4}+1} d z=\int_{-R}^{R} \frac{1}{x^{4}+1} d x+\int_{C_{R}} \frac{1}{z^{4}+1} d z
$$

and so

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{1}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}}-\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{z^{4}+1} d z=\frac{\pi}{\sqrt{2}}
$$

It follows that

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{\sqrt{2}}
$$

