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43.1 Multiplication of power series

The following generalization of the power rule is known as Leibniz’s rule.

Theorem 43.1. If f and g are n times differentiable at z, then

dn

dzn
f(z)g(z) =

n∑
k=0

(
n

k

)
f (k)(z)g(n−k)(z).

Proof. When n = 1, the result is just the product rule:

d

dz
f(z)g(z) = f(z)g′(z) + f ′(z)g(z).

Assuming the result is true for n ≥ 1, we have

dn+1

dzn+1
f(z)g(z) =

d

dz

n∑
k=0

(
n

k

)
f (k)(z)g(n−k)(z)

=
n∑

k=0

(
n

k

) (
f (k)(z)g(n−k+1)(z) + f (k+1)(z)g(n−k)(z)

)
= f(z)g(n+1)(z) +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
f (k)(z)gn−k+1(z)

+ f (n+1)(z)g(z)
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=
n+1∑
k=0

(
n + 1

k

)
f (k)(z)gn−k+1(z),

which is the result for the (n + 1)st derivative.

Now suppose

f(z) =
∞∑

n=0

an(z − z0)
n

and

g(z) =
∞∑

n=0

bn(z − z0)
n

for all z in the open disk D = {z ∈ C : |z − z0| < R}. Then f(z)g(z) is
analytic in D, and so has a Taylor series representation

f(z)g(z) =
∞∑

n=0

cn(z − z0)
n

for all z in D, where

cn =
1

n!

dn

dzn

∣∣∣∣∣
z=z0

f(z)g(z)

=
1

n!

n∑
k=0

(
n

k

)
f (k)(z0)g

(n−k)(z0)

=
n∑

k=0

f (k)(z0)

k!
· g(n−k)(z0)

(n− k)!

=
n∑

k=0

akbn−k.

Note that this is exactly what we would obtain by formally multiplying the
two series out term by term, as we would polynomials.

Example 43.1. We have

ez

1− z
=

(
1 + z +

z2

2
+

z3

6
+ · · ·

) (
1 + z + z2 + z3 + · · ·

)
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= 1 + (1 + 1)z +

(
1

2
+ 1 + 1

)
z2 +

(
1

6
+

1

2
+ 1 + 1

)
z3 + · · ·

= 1 + 2z +
5

2
z2 +

8

3
z3 + · · ·

for all z with |z| < 1.

Example 43.2. Since

sin(z) = z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

for all z ∈ C, we have

sin2(z) = z2 −
(

1

6
+

1

6

)
z4 +

(
1

120
+

1

36
+

1

120

)
x6

−
(

1

5040
+

1

720
+

1

720
+

1

5040

)
x8 + · · ·

= z2 − z4

3
+

2

45
z6 − 1

315
x8 + · · ·

43.2 Division of power series

Division of power series may also be performed term by term as one would
with polynomials.

Example 43.3. Since

sinh(z) = z +
z3

3!
+

z5

5!
+

z7

7!
+ · · ·

for all z, we have, using term by term division,

csch(z) =
1

sinh(z)
=

1

z
− 1

6
z +

7

360
z3 − 31

15120
z5 + · · ·

for all z with 0 < |z| < π (since sinh(z) = 0 when z = nπi, n = 0,±1,±2, . . .).
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