Lecture 43: Multiplication and Division of Power Series

Dan Sloughter
Furman University
Mathematics 39

May 20, 2004

43.1 Multiplication of power series

The following generalization of the power rule is known as Leibniz's rule.
Theorem 43.1. If f and g are n times differentiable at z, then

$$
\frac{d^{n}}{d z^{n}} f(z) g(z)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(z) g^{(n-k)}(z)
$$

Proof. When $n=1$, the result is just the product rule:

$$
\frac{d}{d z} f(z) g(z)=f(z) g^{\prime}(z)+f^{\prime}(z) g(z)
$$

Assuming the result is true for $n \geq 1$, we have

$$
\begin{aligned}
\frac{d^{n+1}}{d z^{n+1}} f(z) g(z)= & \frac{d}{d z} \sum_{k=0}^{n}\binom{n}{k} f^{(k)}(z) g^{(n-k)}(z) \\
= & \sum_{k=0}^{n}\binom{n}{k}\left(f^{(k)}(z) g^{(n-k+1)}(z)+f^{(k+1)}(z) g^{(n-k)}(z)\right) \\
= & f(z) g^{(n+1)}(z)+\sum_{k=1}^{n}\left(\binom{n}{k}+\binom{n}{k-1}\right) f^{(k)}(z) g^{n-k+1}(z) \\
& \quad+f^{(n+1)}(z) g(z)
\end{aligned}
$$

$$
=\sum_{k=0}^{n+1}\binom{n+1}{k} f^{(k)}(z) g^{n-k+1}(z)
$$

which is the result for the $(n+1)$ st derivative.
Now suppose

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

and

$$
g(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

for all z in the open disk $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$. Then $f(z) g(z)$ is analytic in D, and so has a Taylor series representation

$$
f(z) g(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

for all z in D, where

$$
\begin{aligned}
c_{n} & =\left.\frac{1}{n!} \frac{d^{n}}{d z^{n}}\right|_{z=z_{0}} f(z) g(z) \\
& =\frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} f^{(k)}\left(z_{0}\right) g^{(n-k)}\left(z_{0}\right) \\
& =\sum_{k=0}^{n} \frac{f^{(k)}\left(z_{0}\right)}{k!} \cdot \frac{g^{(n-k)}\left(z_{0}\right)}{(n-k)!} \\
& =\sum_{k=0}^{n} a_{k} b_{n-k} .
\end{aligned}
$$

Note that this is exactly what we would obtain by formally multiplying the two series out term by term, as we would polynomials.

Example 43.1. We have

$$
\frac{e^{z}}{1-z}=\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots\right)\left(1+z+z^{2}+z^{3}+\cdots\right)
$$

$$
\begin{aligned}
& =1+(1+1) z+\left(\frac{1}{2}+1+1\right) z^{2}+\left(\frac{1}{6}+\frac{1}{2}+1+1\right) z^{3}+\cdots \\
& =1+2 z+\frac{5}{2} z^{2}+\frac{8}{3} z^{3}+\cdots
\end{aligned}
$$

for all z with $|z|<1$.
Example 43.2. Since

$$
\sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots
$$

for all $z \in \mathbb{C}$, we have

$$
\begin{aligned}
\sin ^{2}(z)= & z^{2}-\left(\frac{1}{6}+\frac{1}{6}\right) z^{4}+\left(\frac{1}{120}+\frac{1}{36}+\frac{1}{120}\right) x^{6} \\
& -\left(\frac{1}{5040}+\frac{1}{720}+\frac{1}{720}+\frac{1}{5040}\right) x^{8}+\cdots \\
= & z^{2}-\frac{z^{4}}{3}+\frac{2}{45} z^{6}-\frac{1}{315} x^{8}+\cdots
\end{aligned}
$$

43.2 Division of power series

Division of power series may also be performed term by term as one would with polynomials.

Example 43.3. Since

$$
\sinh (z)=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!}+\cdots
$$

for all z, we have, using term by term division,

$$
\operatorname{csch}(z)=\frac{1}{\sinh (z)}=\frac{1}{z}-\frac{1}{6} z+\frac{7}{360} z^{3}-\frac{31}{15120} z^{5}+\cdots
$$

for all z with $0<|z|<\pi(\operatorname{since} \sinh (z)=0$ when $z=n \pi i, n=0, \pm 1, \pm 2, \ldots)$.

