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42.1 Uniqueness of Taylor series

Theorem 42.1. If -
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for all z in an open disk D = {2z € C: |z — 29| < R}, then
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Proof. Let C be the circle |z — 25| = Ry, where 0 < Ry < R, and let
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However, we also have
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it follows that

42.2 Uniqueness of Laurent series

Theorem 42.2. If
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for all z in an open annulus Ry < |z — 29| < Ry, Ry > 0, then
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where C' is any closed contour in the annulus with 2y in its interior and
n=0,%£1,+£2,....

Proof. Similar to the previous proof, let
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However, we also have
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