Lecture 4: Polar Coordinates

Dan Sloughter
Furman University
Mathematics 39

March 12, 2004

4.1 Polar coordinates

Recall: If (x, y) is a point in the plane, $(x, y) \neq(0,0), r$ is the distance from (x, y) to the origin, and θ is the angle between the x-axis and the line passing through (x, y) and the origin (measured in the counterclockwise direction), then we call r and θ the polar coordinates of (x, y). Also recall that

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\tan (\theta)=\frac{y}{x}(\text { provided } x \neq 0), \\
x=r \cos (\theta)
\end{gathered}
$$

and

$$
y=r \sin (\theta)
$$

It follows that if $z=x+i y$ is a complex number and r and θ are the polar coordinates of (x, y), then

$$
z=r(\cos (\theta)+i \sin (\theta))
$$

Example 4.1. If $z=1+i$, then $r=\sqrt{2}$ and we may take $\theta=\frac{\pi}{4}$. That is,

$$
z=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right) .
$$

Note, however, that θ is not unique. In particular, we could have used $\theta=\frac{9 \pi}{4}$ or $\theta=-\frac{7 \pi}{4}$. In general, any of the values

$$
\frac{\pi}{4}+2 n \pi \text { for } n=0, \pm 1, \pm 2, \ldots
$$

would work.
We call a given value of the polar coordinate θ an argument of z and denote the set of all possible arguments of z by $\arg z$. We call the value θ of $\arg z$ for which $-\pi<\theta \leq \pi$ the principal value of $\arg z$ and denote it by $\operatorname{Arg} z$.

Example 4.2. We have

$$
\arg (-2-2 i)=-\frac{3 \pi}{4}+2 n \pi \text { for } n=0, \pm 1, \pm 2, \ldots
$$

and

$$
\operatorname{Arg}(-2-2 i)=-\frac{3 \pi}{4}
$$

Example 4.3. $\operatorname{Arg}(-3)=\pi$.

4.2 Euler's formula

We will explain this more carefully later on, but for now we introduce the notation

$$
e^{i \theta}=\exp (i \theta)=\cos (\theta)+i \sin (\theta)
$$

in order to provide a compact way to denote complex numbers in polar form. That is, if z is a complex number with polar coordinates r and θ, we may write

$$
z=r e^{i \theta}
$$

We will see that this agrees with the exponentional function from real variable calculus, but for now we must remember that it is only notation.

Example 4.4. We may now write

$$
1+i=\sqrt{2} e^{i \frac{\pi}{4}}
$$

and

$$
-2-2 i=2 \sqrt{2} e^{-i \frac{3 \pi}{4}}
$$

Example 4.5. Note that $e^{i \pi}=-1$.
Example 4.6. For θ going from 0 to 2π,

$$
z=4 e^{i \theta}
$$

is a parametrization of the circle of radius 4 centered at the origin.
More generally, for a fixed complex number z_{0} and real number R,

$$
z=z_{0}+R e^{i \theta}
$$

$0 \leq \theta \leq 2 \pi$, parametrizes a circle of radius R with center at z_{0}.
Proposition 4.1. If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ are two complex numbers, then

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

and, if $z_{2} \neq 0$,

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} .
$$

Proof. The first result follows from noting that

$$
\begin{aligned}
e^{i \theta_{1}} e^{i \theta_{2}}= & \left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \\
= & \left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right) \\
& \quad+i\left(\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)\right) \\
= & \cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right) .
\end{aligned}
$$

For the second, first note that

$$
\left(e^{i \theta}\right)^{-1}=\frac{1}{e^{i \theta}}=\frac{1}{e^{i \theta}} \frac{e^{-i \theta}}{e^{-i \theta}}=\frac{e^{-i \theta}}{e^{0}}=e^{-i \theta}
$$

It now follows that

$$
\frac{z_{1}}{z_{2}}=z_{1} z_{2}^{-1}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i \theta_{1}} e^{-i \theta_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

As a consequence of this proposition,

$$
\begin{gathered}
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg \left(z_{2}\right) \\
\arg \left(z^{-1}\right)=-\arg (z)
\end{gathered}
$$

and

$$
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
$$

Moreover, note that we now have a geometric interpretation of complex multiplication: Multiplying z by w rotates z by an angle $\operatorname{Arg} w$ and stretches the result by a factor of $|w|$.
Example 4.7. If $z=\frac{1-i}{2+2 i}$, then

$$
\arg z=\arg (1-i)-\arg (2+2 i)=-\frac{\pi}{4}-\frac{\pi}{4}+2 n \pi=-\frac{\pi}{2}+2 n \pi
$$

$n=0, \pm 1, \pm 2, \ldots$ Hence

$$
\operatorname{Arg} z=-\frac{\pi}{2}
$$

Indeed,

$$
z=\frac{1-i}{2+2 i} \frac{2-2 i}{2-2 i}=-\frac{4 i}{8}=-\frac{1}{2} i
$$

4.3 DeMoivre's formula

If $z=r e^{i \theta}$ and n is a postive integer, then

$$
z^{n}=\underbrace{r e^{i \theta} \cdot r e^{i \theta} \cdots r e^{i \theta}}_{n \text { times }}=r^{n} e^{i n \theta} .
$$

Using our results about reciprocals, the result also holds when n is a negative integer. Moreover, if we use the convention that $z^{0}=1$, then

$$
z^{0}=r^{0}(\cos (0)+i \sin (0))=r^{0} e^{i \cdot 0}
$$

Hence we have

$$
z^{n}=r^{n} e^{i n \theta} \text { for } n=0, \pm 1, \pm 2, \cdots
$$

In the particular case when $r=1$ this gives us

$$
(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta) \text { for } n=0, \pm 1, \pm 2, \cdots,
$$

which we call de Moivre's formula.

Figure 4.1: The points $(1+\sqrt{3} i)^{n}$ for $n=1,2, \ldots, 9$

Example 4.8. If $z=1+\sqrt{3} i$, then $|z|=2$ and $\operatorname{Arg} z=\frac{\pi}{3}$. Hence

$$
z^{9}=(1+\sqrt{3} i)^{9}=\left(2 e^{i \frac{\pi}{3}}\right)^{9}=2^{9} e^{i 3 \pi}=-512 .
$$

Figure 4.1 displays z, z^{2}, \ldots, z^{9}.

