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4.1 Polar coordinates

Recall: If (x, y) is a point in the plane, (x, y) 6= (0, 0), r is the distance from
(x, y) to the origin, and θ is the angle between the x-axis and the line passing
through (x, y) and the origin (measured in the counterclockwise direction),
then we call r and θ the polar coordinates of (x, y). Also recall that

r =
√

x2 + y2,

tan(θ) =
y

x
(provided x 6= 0),

x = r cos(θ),

and
y = r sin(θ).

It follows that if z = x + iy is a complex number and r and θ are the polar
coordinates of (x, y), then

z = r(cos(θ) + i sin(θ)).

Example 4.1. If z = 1 + i, then r =
√

2 and we may take θ = π
4
. That is,

z =
√

2
(
cos

(π

4

)
+ i sin

(π

4

))
.

1



Note, however, that θ is not unique. In particular, we could have used θ = 9π
4

or θ = −7π
4

. In general, any of the values

π

4
+ 2nπ for n = 0,±1,±2, . . . ,

would work.

We call a given value of the polar coordinate θ an argument of z and
denote the set of all possible arguments of z by arg z. We call the value θ
of arg z for which −π < θ ≤ π the principal value of arg z and denote it by
Arg z.

Example 4.2. We have

arg(−2− 2i) = −3π

4
+ 2nπ for n = 0,±1,±2, . . . ,

and

Arg (−2− 2i) = −3π

4
.

Example 4.3. Arg (−3) = π.

4.2 Euler’s formula

We will explain this more carefully later on, but for now we introduce the
notation

eiθ = exp(iθ) = cos(θ) + i sin(θ)

in order to provide a compact way to denote complex numbers in polar form.
That is, if z is a complex number with polar coordinates r and θ, we may
write

z = reiθ.

We will see that this agrees with the exponentional function from real variable
calculus, but for now we must remember that it is only notation.

Example 4.4. We may now write

1 + i =
√

2ei π
4

and
−2− 2i = 2

√
2e−i 3π

4 .
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Example 4.5. Note that eiπ = −1.

Example 4.6. For θ going from 0 to 2π,

z = 4eiθ

is a parametrization of the circle of radius 4 centered at the origin.

More generally, for a fixed complex number z0 and real number R,

z = z0 + Reiθ,

0 ≤ θ ≤ 2π, parametrizes a circle of radius R with center at z0.

Proposition 4.1. If z1 = r1e
iθ1 and z2 = r2e

iθ2 are two complex numbers,
then

z1z2 = r1r2e
i(θ1+θ2)

and, if z2 6= 0,
z1

z2

=
r1

r2

ei(θ1−θ2).

Proof. The first result follows from noting that

eiθ1eiθ2 = (cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= (cos(θ1) cos(θ2)− sin(θ1) sin(θ2))

+ i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))

= cos(θ1 + θ2) + i sin(θ1 + θ2).

For the second, first note that

(eiθ)−1 =
1

eiθ
=

1

eiθ

e−iθ

e−iθ
=

e−iθ

e0
= e−iθ.

It now follows that

z1

z2

= z1z
−1
2 =

r1e
iθ1

r2eiθ2
=

r1

r2

eiθ1e−iθ2 =
r1

r2

ei(θ1−θ2)
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As a consequence of this proposition,

arg(z1z2) = arg z1 + arg(z2),

arg(z−1) = − arg(z),

and

arg

(
z1

z2

)
= arg(z1)− arg(z2).

Moreover, note that we now have a geometric interpretation of complex
multiplication: Multiplying z by w rotates z by an angle Arg w and stretches
the result by a factor of |w|.

Example 4.7. If z =
1− i

2 + 2i
, then

arg z = arg(1− i)− arg(2 + 2i) = −π

4
− π

4
+ 2nπ = −π

2
+ 2nπ,

n = 0,±1,±2, . . .. Hence

Arg z = −π

2
.

Indeed,

z =
1− i

2 + 2i

2− 2i

2− 2i
= −4i

8
= −1

2
i.

4.3 DeMoivre’s formula

If z = reiθ and n is a postive integer, then

zn = reiθ · reiθ · · · reiθ︸ ︷︷ ︸
n times

= rneinθ.

Using our results about reciprocals, the result also holds when n is a negative
integer. Moreover, if we use the convention that z0 = 1, then

z0 = r0(cos(0) + i sin(0)) = r0ei·0.

Hence we have
zn = rneinθ for n = 0,±1,±2, · · · .

In the particular case when r = 1 this gives us

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ) for n = 0,±1,±2, · · · ,

which we call de Moivre’s formula.
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Figure 4.1: The points (1 +
√

3i)n for n = 1, 2, . . . , 9

Example 4.8. If z = 1 +
√

3i, then |z| = 2 and Arg z = π
3
. Hence

z9 = (1 +
√

3i)9 =
(
2ei π

3

)9
= 29ei3π = −512.

Figure 4.1 displays z, z2, . . . , z9.
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