Lecture 36: Examples of Taylor Series

Dan Sloughter
Furman University
Mathematics 39

May 6, 2004

36.1 Examples of Taylor series

Example 36.1. Let $f(z)=e^{z}$. Then f is entire, and so its Maclaurin series will converge for all z in the plane. Now $f^{(n)}(0)=e^{0}=1$ for $n=0,1,2,3, \ldots$, and so

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{3!}+\cdots
$$

for all $z \in \mathbb{C}$.
Example 36.2. It follows from the previous example that

$$
e^{2 z}=\sum_{n=0}^{\infty} \frac{(2 z)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}
$$

for all $z \in \mathbb{C}$. Later we will prove the uniqueness of power series representations, from which it will follow that the expression above is the Maclaurin series for $e^{2 z}$.

Example 36.3. Similarly,

$$
e^{i z}=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} z^{n}
$$

and

$$
e^{-i z}=\sum_{n=0}^{\infty} \frac{(-1)^{n} i^{n}}{n!} z^{n}
$$

Hence

$$
e^{i z}-e^{i z}=\sum_{n=0}^{\infty} \frac{\left(1-(-1)^{n}\right) i^{n}}{n!} z^{n}=\sum_{n=0}^{\infty} \frac{2 i^{2 n+1}}{(2 n+1)!} z^{2 n+1}=\sum_{n=0}^{\infty} \frac{2 i(-1)^{n}}{(2 n+1)!} z^{2 n+1}
$$

Thus, for all $z \in \mathbb{C}$,

$$
\sin (z)=\frac{e^{i z}+e^{-i z}}{2 i}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots
$$

Example 36.4. We will see later that we may differentiate a power series as we would a polynomial, that is, term by term. From this it will follow that

$$
\cos (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+1) z^{2 n}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)}!=z-\frac{z^{2}}{2}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots
$$

for all $z \in \mathbb{C}$.
Example 36.5. We now have

$$
\begin{aligned}
\sinh (z) & =-i \sin (i z)=-i \sum_{n=0}^{\infty} \frac{(-1)^{n} i^{2 n+1} z^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{2 n} z^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!} \\
& =z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!}+\cdots
\end{aligned}
$$

and

$$
\cosh (z)=\cos (i z)=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}=1+\frac{z^{2}}{2}+\frac{z^{4}}{4!}+\frac{z^{6}}{6!}+\cdots
$$

for all $z \in \mathbb{C}$.
Example 36.6. We have seen previously that

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}=1+z+z^{2}+z^{3}+\cdots
$$

when $|z|<1$. Hence

$$
\frac{1}{1-z^{2}}=\sum_{n=0}^{\infty} z^{2 n}=1+z^{2}+z^{4}+\cdots
$$

and

$$
\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}=1-z^{2}+z^{4}-z^{6}+\cdots
$$

for all z with $|z|<1$.
Example 36.7. For another example using the geometric series,

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{1-(1-z)} \\
& =\sum_{n=0}^{n}(1-z)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n}(z-1)^{n} \\
& =1-(z-1)+(z-1)^{2}-(z-1)^{3}+\cdots
\end{aligned}
$$

for all z with $|z-1|<1$.
Example 36.8. We have
$\frac{1}{z^{2}+z^{4}}=\frac{1}{z^{2}} \cdot \frac{1}{1+z^{2}}=\frac{1}{z^{2}}\left(1-z^{2}+z^{4}-z^{6}+\cdots\right)=\frac{1}{z^{2}}-1+z^{2}-z^{4}+\cdots$
for all z with $0<|z|<1$. Note that this representation is not a Maclaurin series, but is an example of a Laurent series, which we will consider next.

