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36.1 Examples of Taylor series

Example 36.1. Let f(z) = e*. Then f is entire, and so its Maclaurin series
will converge for all z in the plane. Now f™(0) = e =1forn=0,1,2,3,...,

and so
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for all z € C.

Example 36.2. It follows from the previous example that
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for all z € C. Later we will prove the uniqueness of power series represen-
tations, from which it will follow that the expression above is the Maclaurin
series for 2.

Example 36.3. Similarly,
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Thus, for all z € C
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Example 36.4. We will see later that we may differentiate a power series as
we would a polynomial, that is, term by term. From this it will follow that
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for all z € C.

Example 36.5. We now have

n 2n+1 2n+1

sinh(z) = —isin(iz2) ZZ 2 1
n

B 0 (_1>2nz2n+1
_Z (2n+1)!

22n+1

and

cosh(z):cos(iz)zzz T A

for all z € C.

Example 36.6. We have seen previously that
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when |z| < 1. Hence
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for all z with |z| < 1.

Example 36.7. For another example using the geometric series,
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for all z with |z — 1| < 1.
Example 36.8. We have

1 1 1 1 5 4 6 1 5 4
for all z with 0 < |z| < 1. Note that this representation is not a Maclaurin
series, but is an example of a Laurent series, which we will consider next.



