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34.1 Sequences

Definition 34.1. We say an infinite sequence z1, z2, . . . , zn of complex
numbers has a limit z if for every ε > 0 there exists a positive integer n0 such
that

|zn − z| < ε

whenever n > n0, in which case we write

lim
n→∞

zn = z

and we say the sequence converges. If a sequence does not converge, we say
it diverges.

As with limits of functions, a sequence can have at most one limit. More-
over, if zn = xn + iyn and z = x + iy, where xn, yn, x, y ∈ R, then

lim
n→∞

zn = z

if and only if both
lim

n→∞
xn = x

and
lim

n→∞
yn = y.

The proofs of these results parallel the corresponding proof for limits of
functions.
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Example 34.1. Suppose

zn =
3

n2
+ i

(
1 +

1

n2

)
.

Then

lim
n→∞

zn = lim
n→∞

3

n2
+ i lim

n→∞

(
1 +

1

n2

)
= i.

We could verify this limit from the definition as well by first noting that

|zn − i| =
∣∣∣∣ 3

n2
+ i

1

n2

∣∣∣∣ =

√
10

n2
,

and so, given ε > 0, |zn − i| < ε whenever

n >
4
√

10√
ε

.

34.2 Series

Definition 34.2. Given an infinite sequence z1, z2, z3, . . ., let

SN = z1 + z2 + · · ·+ zN .

We call the sequence S1, S2, S3, . . . an infinite series, which we denote

∞∑
n=1

zn.

We call SN a partial sum. If SN converges with S = limN→∞ SN , then we
say

∑∞
n=1 zn converges and write

∞∑
n=1

zn = S.

If SN does not converge, we say
∑∞

n=1 zn diverges.

Suppose zn = xn + iyn and S = X + iY . Then it follows from previous
results that

∞∑
n=1

zn = S
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if and only if
∞∑

n=1

xn = X and
∞∑
i=1

yn = Y.

Proposition 34.1. If
∑∞

n=1 zn converges, then limn→∞ zn = 0.

Proof. Let S =
∑∞

n=1 zn and SN =
∑N

n=1 zn. Then

lim
N→∞

zN = lim
N→∞

(SN − SN−1) = S − S = 0.

Definition 34.3. We say an infinite series

∞∑
n=1

zn

is absolutely convergent if the infinite series

∞∑
n=1

|zn|

converges.

Proposition 34.2. If
∑∞

n=1 zn is absolutely convergent, then it is convergent.

Proof. Suppose zn = xn + iyn and

∞∑
n=1

|zn| =
∞∑

n=1

√
x2

n + y2
n

converges. Since
|xn| ≤

√
x2

n + y2
n

and
|yn| ≤

√
x2

n + y2
n,

it follows, by the comparison test, that both

∞∑
n=1

|xn|
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and
∞∑

n=1

|yn|

converge. Hence, by a result from calculus, both
∑∞

n=1 xn and
∑∞

n=1 yn

converge. Thus
∑∞

n=1 zn converges.

Definition 34.4. Given a complex numbers a0, a1, a2, . . ., and z0, we call an
infinite series of the form

∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·

a power series

Example 34.2. Let z ∈ C and consider the power series

∞∑
n=0

zn.

If

SN(z) =
N−1∑
n=0

zn = 1 + z + z2 + · · ·+ zN−1,

then, from an earlier homework problem,

SN(z) =
1− zN

1− z
,

when z 6= 1. Let

S(z) =
1

1− z
.

If we let

ρN(z) = S(z)− SN(z) =
zN

1− z
,

then

|ρN(z)| = |z|N

|1− z|
.

It follows that
lim

N→∞
|ρN(z)| = 0
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if and only if |z| < 1. That is.

∞∑
n=0

zn =
1

1− z

if and only if |z| < 1. Put another way, the power series

1 + z + z2 + · · ·

converges to 1
1−z

for all z in the open disk |z| < 1 and for no other points in
the plane.
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