Lecture 32:
 Liouville's Theorem

Dan Sloughter
Furman University
Mathematics 39

May 3, 2004

32.1 Liouville's Theorem

The following remarkable result is known as Liouville's theorem.
Theorem 32.1. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire and bounded, then $f(z)$ is constant throughout the plane.

The proof of Liouville's theorem follows easily from the following lemma.
Lemma 32.1. Let C_{R} be the circle $\left|z-z_{0}\right|=R, R>0$, and suppose f is analytic on the region consisting of C_{R} and the points in its interior. If M_{R} is the maximum value of $|f(z)|$ on C_{R}, then, for $n=1,2,3, \ldots$,

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}}
$$

Proof. Since

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C_{R}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

and

$$
\left|\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\right|=\frac{|f(z)|}{\left|z-z_{0}\right|^{n+1}} \leq \frac{M_{R}}{R^{n+1}},
$$

we have

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \cdot \frac{M_{R}}{R^{n+1}} \cdot 2 \pi R=\frac{n!M_{R}}{R^{n}} .
$$

We may now return to the proof of Liouville's theorem.
Proof. Suppose f is entire and $f(z) \leq M$ for all $z \in \mathbb{C}$. From the lemma, we have, for any $z_{0} \in \mathbb{C}$ and any $R>0$,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M_{R}}{R} \leq \frac{M}{R}
$$

Letting $R \rightarrow \infty$, we have $\left|f^{\prime}\left(z_{0}\right)\right|=0$, and hence $f^{\prime}\left(z_{0}\right)=0$ for every $z_{0} \in \mathbb{C}$. Thus $f(z)=c$ for some constant c and all $z \in \mathbb{C}$.

32.2 Polynomials

Now consider a polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}
$$

with $a_{n} \neq 0$. Suppose there does not exists a $z_{0} \in \mathbb{C}$ for which $P\left(z_{0}\right)=0$. Let

$$
f(z)=\frac{1}{P(z)}
$$

Then f is entire. Moreover, if $n \geq 1$,

$$
\lim _{z \rightarrow \infty} f(z)=0
$$

since

$$
\begin{aligned}
\lim _{z \rightarrow 0} f\left(\frac{1}{z}\right) & =\lim _{z \rightarrow 0} \frac{1}{P\left(\frac{1}{z}\right)} \\
& =\lim _{z \rightarrow 0} \frac{1}{a_{0}+\frac{a_{1}}{z}+\frac{a_{2}}{z^{2}}+\cdots+\frac{a_{n}}{z^{n}}} \\
& =\lim _{z \rightarrow 0} \frac{z^{n}}{a_{0} z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\cdots+a_{n}} \\
& =\frac{0}{a_{n}} \\
& =0
\end{aligned}
$$

Hence there exists $R>0$ such that $|f(z)|<1$ whenever $|z|>R$. Since f is continuous on the closed disk $|z| \leq R$, there exists $M>0$ such that $|f(z)| \leq M$ whenever $|z| \leq R$. It follows that f is bounded on \mathbb{C}. But then, by Liouville's theorem, f is a constant function, which is true only if $n=0$. Hence we have proven the following fundamental theorem of algebra.

Theorem 32.2. If P is a polynomial of degree $n \geq 1$, then there exists at least one point $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.

Given a polynomial P of degree $n \geq 1$ and a point z_{1} for which $P\left(z_{1}\right)=0$, one may show that there exists a polynomial Q of degree $n-1$ such that

$$
P(z)=\left(z-z_{1}\right) Q(z)
$$

Proceeding in this way, it now follows that there exist constants c and z_{k}, $k=1,2,3, \ldots, n$, such that

$$
P(z)=c\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) .
$$

This is the Fundamental Theorem of Algebra.
Corollary 32.1. Every algebraist needs an analyst.

