Lecture 31:
 Derivatives of Analytic Functions

Dan Sloughter
Furman University
Mathematics 39

May 11, 2004

31.1 The derivative of an analytic function

Lemma 31.1. Suppose C is a positively oriented, simple closed contour and R is the region consisting of C and all points in the interior of C. If f is analytic in R, then

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s
$$

for any z in the interior of C.
Proof. Let d be the minimum value of $|s-z|$ for $s \in C$. Note that d exists because $|s-z|$ is a continuous function and C is a closed, bounded set. Consider Δz with $0<|\Delta z|<d$. Now, by the Cauchy integral formula,

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z} d s
$$

and

$$
f(z+\Delta z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z-\Delta z} d s
$$

and so

$$
f(z+\Delta z)-f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) \Delta z}{(s-z-\Delta z)(s-z)} d s
$$

Hence

$$
\begin{aligned}
\frac{f(z+\Delta z)-f(z)}{\Delta z}-\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s & =\frac{1}{2 \pi i} \int_{C}\left(\frac{f(s)}{(s-z-\Delta z)(s-z)}-\frac{f(s)}{(s-z)^{2}}\right) d s \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(s) \Delta z}{(s-z-\Delta z)(s-z)^{2}} d s
\end{aligned}
$$

For $s \in C$,

$$
|s-z| \geq d
$$

and

$$
|s-z-\Delta z| \geq||s-z|-|\Delta z|| \geq d-|\Delta z| .
$$

It follows that if M is the maximum value of $|f(s)|$ on C and L is the length of C, then

$$
\left|\int_{C} \frac{f(s) \Delta z}{(s-z-\Delta z)(s-z)^{2}} d s\right| \leq \frac{M|\Delta z|}{(d-|\Delta z|) d^{2}} L
$$

Since

$$
\lim _{\Delta z \rightarrow 0} \frac{M|\Delta z|}{(d-|\Delta z|) d^{2}} L=0
$$

we have

$$
\lim _{\Delta z \rightarrow 0}\left(\frac{f(z+\Delta z)-f(z)}{\Delta z}-\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s\right)=0
$$

that is,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s
$$

A similar argument shows that

$$
f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s)}{(s-z)^{3}} d s
$$

Now if f is analytic at a point z_{0}, then there exists a δ neighborhood of z_{0} in which f is analytic. Letting C be the circle $\left|z-z_{0}\right|=\frac{\delta}{2}$, the above formula shows that f^{\prime} is analytic on the $\frac{\delta}{2}$ neighborhood of z_{0}, and so, in particular, analytic at z_{0}. Repeating this argument, we have the following theorem.

Theorem 31.1. If f is analytic at z_{0}, then $f^{(n)}\left(z_{0}\right)$ exists, and is analytic, for all positive integers n.

Corollary 31.1. If $f(x+i y)=u(x, y)+i v(x, y)$ is analytic at $z=x+i y$, then u and v have continuous partial derivatives of all orders.

The following theorem is known as Morera's theorem.
Theorem 31.2. If f is continuous on a domain D and

$$
\int_{C} f(z) d z=0
$$

for every closed contour C in D, then f is analytic in D.
Proof. By an earlier result, we know there exists an analytic function F with $F^{\prime}(z)=f(z)$ for all $z \in D$. Hence f is analytic.

More generally, it may be shown that if f satisfies the conditions of the lemma, then, for $n=1,2,3, \ldots$,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{n+1}} d s
$$

31.2 Examples

Example 31.1. Suppose C is the circle $|z|=1$ with positive orientation. Then

$$
\int_{C} \frac{e^{3 z}}{z^{4}} d z=\frac{3^{3} e^{0} 2 \pi i}{3!}=9 \pi i
$$

Example 31.2. If z_{0} is point in the interior of the positively oriented, simple closed contour C, then

$$
\int_{C} \frac{1}{z-z_{0}} d z=2 \pi i
$$

and, for $n=2,3,4, \ldots$,

$$
\int_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z=0
$$

Example 31.3. Let C be the circle $|z-i|=1$ with positive orientation. Then

$$
\int_{C} \frac{1}{\left(z^{2}+1\right)^{2}} d z=\int_{C} \frac{\frac{1}{(z+i)^{2}}}{(z-i)^{2}} d z=2 \pi i\left(-2(i+i)^{-3}\right)=\frac{\pi}{2}
$$

