Lecture 30: The Cauchy Integral Formula

Dan Sloughter Furman University Mathematics 39

April 28, 2004

30.1 The Cauchy integral formula

Theorem 30.1. Suppose f is analytic in the region consisting of a simple closed contour C, positively oriented, and all points in the interior of C. If z_0 is in the interior of C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$

Proof. Choose $\rho > 0$ such that the circle C_{ρ} of radius ρ with center z_0 lies entirely within the interior of C. Take C_{ρ} with positive orientation. Since

$$\frac{f(z)}{z - z_0}$$

is analytic on C, C_{ρ} , and in the region between C and C_{ρ} , we have

$$\int_{C} \frac{f(z)}{z - z_0} dz = \int_{C_{\rho}} \frac{f(z)}{z - z_0} dz.$$

Hence

$$\int_{C} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \int_{C_{\rho}} \frac{1}{z - z_{0}} dz = \int_{C_{\rho}} \frac{f(z)}{z - z_{0}} dz - f(z_{0}) \int_{C_{\rho}} \frac{1}{z - z_{0}} dz$$
$$= \int_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz.$$

Now

$$\int_{C_{\rho}} \frac{1}{z - z_0} dz = 2\pi i,$$

so we have

$$\int_C \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) = \int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz.$$

It remains to show that the integral on the right is 0.

Let $\epsilon > 0$. Since f is continuous at z_0 , there exists $\delta > 0$ such that

 $|f(z) - f(z_0)| < \epsilon$

whenever $|z - z_0| < \delta$. If we choose $\rho < \delta$, then

$$\left|\frac{f(z) - f(z_0)}{z - z_0}\right| = \frac{|f(z) - f(z_0)|}{|z - z_0|} < \frac{\epsilon}{\rho}$$

for all $z \in C_{\rho}$. Hence

$$\left| \int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz \right| < \frac{\epsilon}{\rho} 2\pi\rho = 2\pi\epsilon.$$

Since $\epsilon > 0$ was arbitrary, it follows that

$$\int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz = 0$$

Example 30.1. If C is the circle |z| = 1 with positive orientation, then

$$\int_C \frac{e^z}{z} = 2\pi i e^0 = 2\pi i.$$

Example 30.2. If C is the circle |z| = 2 with positive orientation, then

$$\int_{C} \frac{1}{z^{2} + 1} dz = \int_{C} \frac{1}{(z + i)(z - i)} dz$$
$$= \int_{C_{1}} \frac{\frac{1}{z + i}}{z - i} dz + \int_{C_{2}} \frac{\frac{1}{z - i}}{z + i} dz$$

$$= 2\pi i \frac{1}{i+i} + 2\pi i \frac{1}{-i-i}$$
$$= \pi - \pi$$
$$= 0,$$

where C_1 is the circle $|z - i| = \frac{1}{2}$ and C_2 is the circle $|z + i| = \frac{1}{2}$.