Lecture 30: The Cauchy Integral Formula

Dan Sloughter
Furman University
Mathematics 39

April 28, 2004

30.1 The Cauchy integral formula

Theorem 30.1. Suppose f is analytic in the region consisting of a simple closed contour C, positively oriented, and all points in the interior of C. If z_{0} is in the interior of C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

Proof. Choose $\rho>0$ such that the circle C_{ρ} of radius ρ with center z_{0} lies entirely within the interior of C. Take C_{ρ} with positive orientation. Since

$$
\frac{f(z)}{z-z_{0}}
$$

is analytic on C, C_{ρ}, and in the region between C and C_{ρ}, we have

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z=\int_{C_{\rho}} \frac{f(z)}{z-z_{0}} d z
$$

Hence

$$
\begin{aligned}
\int_{C} \frac{f(z)}{z-z_{0}} d z-f\left(z_{0}\right) \int_{C_{\rho}} \frac{1}{z-z_{0}} d z & =\int_{C_{\rho}} \frac{f(z)}{z-z_{0}} d z-f\left(z_{0}\right) \int_{C_{\rho}} \frac{1}{z-z_{0}} d z \\
& =\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
\end{aligned}
$$

Now

$$
\int_{C_{\rho}} \frac{1}{z-z_{0}} d z=2 \pi i
$$

so we have

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z-2 \pi i f\left(z_{0}\right)=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

It remains to show that the integral on the right is 0 .
Let $\epsilon>0$. Since f is continuous at z_{0}, there exists $\delta>0$ such that

$$
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon
$$

whenever $\left|z-z_{0}\right|<\delta$. If we choose $\rho<\delta$, then

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|=\frac{\left|f(z)-f\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}<\frac{\epsilon}{\rho}
$$

for all $z \in C_{\rho}$. Hence

$$
\left|\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|<\frac{\epsilon}{\rho} 2 \pi \rho=2 \pi \epsilon .
$$

Since $\epsilon>0$ was arbitrary, it follows that

$$
\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z=0
$$

Example 30.1. If C is the circle $|z|=1$ with positive orientation, then

$$
\int_{C} \frac{e^{z}}{z}=2 \pi i e^{0}=2 \pi i
$$

Example 30.2. If C is the circle $|z|=2$ with positive orientation, then

$$
\begin{aligned}
\int_{C} \frac{1}{z^{2}+1} d z & =\int_{C} \frac{1}{(z+i)(z-i)} d z \\
& =\int_{C_{1}} \frac{\frac{1}{z+i}}{z-i} d z+\int_{C_{2}} \frac{\frac{1}{z-i}}{z+i} d z
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi i \frac{1}{i+i}+2 \pi i \frac{1}{-i-i} \\
& =\pi-\pi \\
& =0
\end{aligned}
$$

where C_{1} is the circle $|z-i|=\frac{1}{2}$ and C_{2} is the circle $|z+i|=\frac{1}{2}$.

