# Lecture 29: Simply Connected Domains 

Dan Sloughter<br>Furman University<br>Mathematics 39

April 27, 2004

### 29.1 Simply connected comains

Definition 29.1. We say a domain $D$ is simply connected if, whenever $C \subset$ $D$ is a simple closed contour, every point in the interior of $C$ lies in $D$. We say a domain which is not simply connected is multiply connected

Example 29.1. The domain

$$
U=\{z \in \mathbb{C}:|z|<1\}
$$

is simply connected. The domain

$$
A=\{z \in \mathbb{C}: 1<|z|<2\}
$$

is not simply connected.
Theorem 29.1. If $D$ is a simply connected domain and $f$ is analytic in $D$, then

$$
\int_{C} f(z) d z=0
$$

for every closed contour $C$ in $D$.
Proof. If $C$ is a simple closed contour, then the conclusion follows from the Cauchy-Goursat theorem. If $C$ is not simple, but intersects itself only a finite number of times, then the conclusion follows by writing $C$ as a sum of simple closed contours. We will omit the more difficult situation in which $C$ intersects itself an infinite number of times.

Corollary 29.1. If $D$ is a simply connected domain and $f$ is analytic in $D$, then $f$ has an antiderivative at all points of $D$.

Note that, in particular, entire functions have antiderivatives on all of $\mathbb{C}$.

### 29.2 Multiply connected domains

Theorem 29.2. Suppose $C$ is a positively oriented, simple closed curve and that $C_{1}, C_{2}, \ldots C_{n}$ are negatively oriented, simple closed contours, all of which are in the interior of $C$, are disjoint, and have disjoint interiors. Let $R$ be the region consisting of $C, C_{1}, C_{2}, \ldots, C_{n}$, and all points which are in the interior of $C$ and the exterior of each $C_{k}$. If $f$ is analytic in $R$, then

$$
\int_{C} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z=0
$$

Proof. Let $L_{1}$ be a polygonal path connecting $C$ to $C_{1}, L_{k}$ a polygonal path connecting $C_{k}$ to $C_{k+1}, k=1,2, \ldots, n-1$, and $L_{n+1}$ a polygonal path connecting $C_{n}$ to $C$. Let $B_{1}$ be the part of $C$ from where $L_{n+1}$ joins $C$ to where $L_{1}$ joins $C, B_{2}$ the remaining part of $C, \alpha_{k}$ the part of $C_{k}$ between where $L_{k}$ and $L_{k+1}$ join $C_{k}$, and $\beta_{k}$ the remaining part of $C_{k}$. Let

$$
\Gamma_{1}=B_{1}+L_{1}+\alpha_{1}+L_{2}+\alpha_{2}+\cdots+\alpha_{n}+L_{n+1}
$$

and

$$
\Gamma_{2}=B_{2}-L_{n+1}+\beta_{n}-L_{n}+\beta_{n-1}-\cdots+\beta_{1}-L_{1}
$$

Then, by the Cauchy-Goursat theorem,

$$
\int_{\Gamma_{1}} f(z) d z=0=\int_{\Gamma_{2}} f(z) d z
$$

Hence

$$
0=\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z=\int_{C} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z
$$

Corollary 29.2. Suppose $C_{1}$ and $C_{2}$ are positively oriented, simply closed contours with $C_{2}$ lying in the interior of $C_{1}$. Let $R$ be the region consisting of $C_{1}, C_{2}$, and the part of the interior of $C_{1}$ which is in the exterior of $C_{2}$. If $f$ is analytic in $R$, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Proof. From the previous theorem, we have

$$
\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0
$$

Example 29.2. By a homework exercise, if $C_{0}$ is any positively oriented circle with center at the origin, then

$$
\int_{C_{0}} \frac{1}{z} d z=2 \pi i .
$$

It now follows that if $C$ is any positively oriented, simple closed contour with the origin in its interior, then

$$
\int_{C} \frac{1}{z} d z=2 \pi i .
$$

