Lecture 29: Simply Connected Domains

Dan Sloughter Furman University Mathematics 39

April 27, 2004

29.1 Simply connected comains

Definition 29.1. We say a domain D is simply connected if, whenever $C \subset D$ is a simple closed contour, every point in the interior of C lies in D. We say a domain which is not simply connected is multiply connected

Example 29.1. The domain

$$U = \{ z \in \mathbb{C} : |z| < 1 \}$$

is simply connected. The domain

$$A = \{ z \in \mathbb{C} : 1 < |z| < 2 \}$$

is not simply connected.

Theorem 29.1. If D is a simply connected domain and f is analytic in D, then

$$\int_C f(z)dz = 0$$

for every closed contour C in D.

Proof. If C is a simple closed contour, then the conclusion follows from the Cauchy-Goursat theorem. If C is not simple, but intersects itself only a finite number of times, then the conclusion follows by writing C as a sum of simple closed contours. We will omit the more difficult situation in which C intersects itself an infinite number of times.

Corollary 29.1. If D is a simply connected domain and f is analytic in D, then f has an antiderivative at all points of D.

Note that, in particular, entire functions have antiderivatives on all of \mathbb{C} .

29.2 Multiply connected domains

Theorem 29.2. Suppose C is a positively oriented, simple closed curve and that C_1, C_2, \ldots, C_n are negatively oriented, simple closed contours, all of which are in the interior of C, are disjoint, and have disjoint interiors. Let R be the region consisting of C, C_1, C_2, \ldots, C_n , and all points which are in the interior of C and the exterior of each C_k . If f is analytic in R, then

$$\int_C f(z)dz + \sum_{k=1}^n \int_{C_k} f(z)dz = 0.$$

Proof. Let L_1 be a polygonal path connecting C to C_1 , L_k a polygonal path connecting C_k to C_{k+1} , k = 1, 2, ..., n-1, and L_{n+1} a polygonal path connecting C_n to C. Let B_1 be the part of C from where L_{n+1} joins C to where L_1 joins C, B_2 the remaining part of C, α_k the part of C_k between where L_k and L_{k+1} join C_k , and β_k the remaining part of C_k . Let

$$\Gamma_1 = B_1 + L_1 + \alpha_1 + L_2 + \alpha_2 + \dots + \alpha_n + L_{n+1}$$

and

$$\Gamma_2 = B_2 - L_{n+1} + \beta_n - L_n + \beta_{n-1} - \dots + \beta_1 - L_1.$$

Then, by the Cauchy-Goursat theorem,

$$\int_{\Gamma_1} f(z)dz = 0 = \int_{\Gamma_2} f(z)dz.$$

Hence

$$0 = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz = \int_C f(z)dz + \sum_{k=1}^n \int_{C_k} f(z)dz.$$

Corollary 29.2. Suppose C_1 and C_2 are positively oriented, simply closed contours with C_2 lying in the interior of C_1 . Let R be the region consisting of C_1 , C_2 , and the part of the interior of C_1 which is in the exterior of C_2 . If f is analytic in R, then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

Proof. From the previous theorem, we have

$$\int_{C_1} f(z)dz - \int_{C_2} f(z)dz = 0.$$

Example 29.2. By a homework exercise, if C_0 is any positively oriented circle with center at the origin, then

$$\int_{C_0} \frac{1}{z} dz = 2\pi i.$$

It now follows that if C is any positively oriented, simple closed contour with the origin in its interior, then

$$\int_C \frac{1}{z} dz = 2\pi i.$$