Lecture 28:
 The Cauchy-Goursat Theorem

Dan Sloughter
Furman University
Mathematics 39

April 26, 2004

28.1 The Cauchy-Goursat Theorem

We say a simple closed contour is positively oriented if when traversing the curve the interior always lies to the left. For example, a circle oriented in the counterclockwise direction is positively oriented.

The following theorem was originally proved by Cauchy and later extended by Goursat.

Theorem 28.1. If R is the region consisting of a simple closed contour C and all points in its interior and $f: R \rightarrow \mathbb{C}$ is analytic in R, then

$$
\int_{C} f(z) d z=0 .
$$

We need some terminology and a lemma before proceeding with the proof of the theorem. Given a simple closed contour C, let R be the region consisting of C and all points in the interior of C. Since R is a bounded region, we may find real numbers a, b, c, and d such that $R \subset[a, b] \times[c, d]$. We may then divide this square into four, equal, smaller squares by bisecting the original square with a horizontal and a vertical line. Moreover, any smaller square obtained in this way may itself be subdivided into still smaller squares. After any finite number of subdivisions, we have a cover of R by squares consisting of those squares which lie entirely within R and those partial squares which are the intersection of a square with R.

Lemma 28.1. Let C be a positively oriented, simple closed contour and let R be the region consisting of C and all points in its interior. Given an analytic function $f: R \rightarrow \mathbb{C}$ and any $\epsilon>0$, we may find a covering of R by squares, say $T_{1}, T_{2}, \ldots, T_{n}$, such that for every $j=1,2, \ldots, n$, there exists a fixed point $z_{j} \in T_{j}$ such that

$$
\left|\frac{f(z)-f\left(z_{j}\right)}{z-z_{j}}-f^{\prime}\left(z_{j}\right)\right|<\epsilon
$$

for every $z \in T_{j}, z \neq z_{j}$
Proof. Suppose it is not possible to find such a covering by squares. Then for any given covering by squares, there exists a square, or partial square, σ_{0} for which no finite number of subdivisions will yield a covering by squares that satisfies the conclusion of the lemma. Hence, upon subdividing σ_{0} into four squares, there exists a square, or partial square, σ_{1} for which no finite number of subdivisions will yield a covering satisfying the conclusion of the lemma. Repeating this process, we create an infinite nested sequence of squares (or partial squares)

$$
\sigma_{0} \supset \sigma_{1} \supset \sigma_{2} \supset \cdots \supset \sigma_{k} \supset \cdots
$$

each containing points of R and none satisfying the conclusion of the lemma. It follows (see the homework) that there is a point

$$
z_{0} \in \bigcap_{k=0}^{\infty} \sigma_{k}
$$

moreover, since each square contains points of R, z_{0} must be an accumulation point of R. Since R is closed, it follows that $z_{0} \in R$. Now f is analytic at z_{0}, and so $f^{\prime}\left(z_{0}\right)$ exists and there exists a $\delta>0$ such that

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{j}}-f^{\prime}\left(z_{0}\right)\right|<\epsilon
$$

whenever $\left|z-z_{0}\right|<\delta$. However, we may choose K large enough so that if $z \in \sigma_{K},\left|z-z_{0}\right|<\delta$, contradicting our assumption that no subdivision of σ_{K} satisfies the condition of the lemma.

We may now prove the Cauchy-Goursat theorem.

Proof. Let R be the region consisting of a positively oriented, simple closed contour C and all points in the interior of C, and let $f: R \rightarrow \mathbb{C}$ be analytic in R. Given $\epsilon>0$, consider a covering by squares as described in the lemma. For $z \in T_{j}$, define

$$
\delta_{j}(z)= \begin{cases}\frac{f(z)-f\left(z_{j}\right)}{z-z_{j}}-f^{\prime}\left(z_{j}\right), & \text { if } z \neq z_{j} \\ 0, & \text { if } z=z_{j}\end{cases}
$$

Note that δ_{j} is continuous on T_{j} and $\left|\delta_{j}(z)\right|<\epsilon$ for all $z \in T_{j}$. Let C_{j} be the positively oriented boundary of T_{j} and note that

$$
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}} f(z) d z
$$

since the integrals along sides which are common to two squares cancel out.
Now for $z \in T_{j}$,
$f(z)=f\left(z_{j}\right)+\left(z-z_{j}\right)\left(\delta_{j}(z)+f^{\prime}\left(z_{j}\right)\right)=f\left(z_{j}\right)+f^{\prime}\left(z_{j}\right) z-z_{j} f^{\prime}\left(z_{j}\right)+\left(z-z_{j}\right) \delta_{j}(z)$.
Hence

$$
\begin{aligned}
\int_{C_{j}} f(z) d z= & f\left(z_{j}\right) \int_{C_{j}} d z-z_{j} f^{\prime}\left(z_{j}\right) \int_{C_{j}} d z+f^{\prime}\left(z_{j}\right) \int_{C_{j}} z d z \\
& +\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z \\
= & \int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z
\end{aligned}
$$

Thus

$$
\int_{C} f(z) d z=\sum_{j=1}^{n} \int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z
$$

and so

$$
\left|\int_{C} f(z) d z\right| \leq \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right| .
$$

Let s_{j} be the length of a side of T_{j}. Then, for $z \in C_{j}$,

$$
\left|z-z_{j}\right| \leq \sqrt{2} s_{j}
$$

and so

$$
\left|\left(z-z_{j}\right) \delta_{j}(z)\right|=\left|z-z_{j}\right|\left|\delta_{j}(z)\right|<\sqrt{2} s_{j} \epsilon
$$

for all $z \in C_{j}$.
Now let L be the length of C, L_{j} be the length of $C \cap T_{j}, A_{j}=s_{j}^{2}$, and S be the length of the side of the original square enclosing R. Then the length of C_{j} is less than or equal to

$$
4 s_{j}+L_{j}
$$

so

$$
\begin{aligned}
\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right| & <\left(\sqrt{2} s_{j} \epsilon\right)\left(4 s_{j}+L_{j}\right) \\
& =\left(4 \sqrt{2} A_{j}+\sqrt{2} s_{j} L_{j}\right) \epsilon \\
& <\left(4 \sqrt{2} A_{j}+\sqrt{2} S L_{j}\right) \epsilon
\end{aligned}
$$

Hence

$$
\sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\left(4 \sqrt{2} S^{2}+\sqrt{2} S L\right) \epsilon
$$

Thus we have shown that, no matter how small we choose $\epsilon>0$, we have

$$
\left|\int_{C} f(z) d z\right|<\left(4 \sqrt{2} S^{2}+\sqrt{2} S L\right) \epsilon
$$

since S and L are fixed and ϵ may be made arbitrarily small, it follows that

$$
\int_{C} f(z) d z=0 .
$$

