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28.1 The Cauchy-Goursat Theorem

We say a simple closed contour is positively oriented if when traversing the
curve the interior always lies to the left. For example, a circle oriented in the
counterclockwise direction is positively oriented.

The following theorem was originally proved by Cauchy and later ex-
tended by Goursat.

Theorem 28.1. If R is the region consisting of a simple closed contour C
and all points in its interior and f : R → C is analytic in R, then∫

C

f(z)dz = 0.

We need some terminology and a lemma before proceeding with the proof
of the theorem. Given a simple closed contour C, let R be the region consist-
ing of C and all points in the interior of C. Since R is a bounded region, we
may find real numbers a, b, c, and d such that R ⊂ [a, b]×[c, d]. We may then
divide this square into four, equal, smaller squares by bisecting the original
square with a horizontal and a vertical line. Moreover, any smaller square
obtained in this way may itself be subdivided into still smaller squares. After
any finite number of subdivisions, we have a cover of R by squares consisting
of those squares which lie entirely within R and those partial squares which
are the intersection of a square with R.
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Lemma 28.1. Let C be a positively oriented, simple closed contour and
let R be the region consisting of C and all points in its interior. Given an
analytic function f : R → C and any ε > 0, we may find a covering of R by
squares, say T1, T2, . . . , Tn, such that for every j = 1, 2, . . . , n, there exists a
fixed point zj ∈ Tj such that∣∣∣∣f(z)− f(zj)

z − zj

− f ′(zj)

∣∣∣∣ < ε

for every z ∈ Tj, z 6= zj

Proof. Suppose it is not possible to find such a covering by squares. Then for
any given covering by squares, there exists a square, or partial square, σ0 for
which no finite number of subdivisions will yield a covering by squares that
satisfies the conclusion of the lemma. Hence, upon subdividing σ0 into four
squares, there exists a square, or partial square, σ1 for which no finite number
of subdivisions will yield a covering satisfying the conclusion of the lemma.
Repeating this process, we create an infinite nested sequence of squares (or
partial squares)

σ0 ⊃ σ1 ⊃ σ2 ⊃ · · · ⊃ σk ⊃ · · · ,

each containing points of R and none satisfying the conclusion of the lemma.
It follows (see the homework) that there is a point

z0 ∈
∞⋂

k=0

σk;

moreover, since each square contains points of R, z0 must be an accumulation
point of R. Since R is closed, it follows that z0 ∈ R. Now f is analytic at z0,
and so f ′(z0) exists and there exists a δ > 0 such that∣∣∣∣f(z)− f(z0)

z − zj

− f ′(z0)

∣∣∣∣ < ε

whenever |z − z0| < δ. However, we may choose K large enough so that if
z ∈ σK , |z− z0| < δ, contradicting our assumption that no subdivision of σK

satisfies the condition of the lemma.

We may now prove the Cauchy-Goursat theorem.

2



Proof. Let R be the region consisting of a positively oriented, simple closed
contour C and all points in the interior of C, and let f : R → C be analytic
in R. Given ε > 0, consider a covering by squares as described in the lemma.
For z ∈ Tj, define

δj(z) =


f(z)− f(zj)

z − zj

− f ′(zj), if z 6= zj,

0, if z = zj.

Note that δj is continuous on Tj and |δj(z)| < ε for all z ∈ Tj. Let Cj be the
positively oriented boundary of Tj and note that∫

C

f(z)dz =
n∑

j=1

∫
Cj

f(z)dz

since the integrals along sides which are common to two squares cancel out.
Now for z ∈ Tj,

f(z) = f(zj)+(z−zj)(δj(z)+f ′(zj)) = f(zj)+f ′(zj)z−zjf
′(zj)+(z−zj)δj(z).

Hence ∫
Cj

f(z)dz = f(zj)

∫
Cj

dz − zjf
′(zj)

∫
Cj

dz + f ′(zj)

∫
Cj

zdz

+

∫
Cj

(z − zj)δj(z)dz

=

∫
Cj

(z − zj)δj(z)dz.

Thus ∫
C

f(z)dz =
n∑

j=1

∫
Cj

(z − zj)δj(z)dz,

and so ∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣∣
∫

Cj

(z − zj)δj(z)dz

∣∣∣∣∣ .

Let sj be the length of a side of Tj. Then, for z ∈ Cj,

|z − zj| ≤
√

2sj,
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and so
|(z − zj)δj(z)| = |z − zj||δj(z)| <

√
2sjε

for all z ∈ Cj.
Now let L be the length of C, Lj be the length of C ∩ Tj, Aj = s2

j , and S
be the length of the side of the original square enclosing R. Then the length
of Cj is less than or equal to

4sj + Lj,

so ∣∣∣∣∣
∫

Cj

(z − zj)δj(z)dz

∣∣∣∣∣ < (
√

2sjε)(4sj + Lj)

= (4
√

2Aj +
√

2sjLj)ε

< (4
√

2Aj +
√

2SLj)ε.

Hence
n∑

j=1

∣∣∣∣∣
∫

Cj

(z − zj)δj(z)dz

∣∣∣∣∣ < (4
√

2S2 +
√

2SL)ε.

Thus we have shown that, no matter how small we choose ε > 0, we have∣∣∣∣∫
C

f(z)dz

∣∣∣∣ < (4
√

2S2 +
√

2SL)ε;

since S and L are fixed and ε may be made arbitrarily small, it follows that∫
C

f(z)dz = 0.
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