Lecture 27:
 Antiderivatives

Dan Sloughter
Furman University
Mathematics 39

April 23, 2004

27.1 Equivalent conditions

Theorem 27.1. Suppose $D \subset \mathbb{C}$ is a domain and $f: D \rightarrow \mathbb{C}$ is continuous on D. Then f has an antiderivative F on D if and only if

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

whenever $C_{1}, C_{2} \subset D$ have the same initial point z_{1} and the same final point z_{2}.

Proof. Suppose f has an antiderivative F on D and let C be a smooth arc with parametrization $z(t), a \leq t \leq b$. Let $z_{1}=z(a)$ and $z_{2}=z(b)$. Then

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\left.F(z(t))\right|_{a} ^{b}=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

and so would be the same for any smooth arc from z_{1} to z_{2}. If C is a contour consisting of smooth $\operatorname{arcs} C_{k}$, with initial point z_{k-1} and final point $z_{k}, k=1,2, \ldots, n$, then

$$
\int_{C} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z=\sum_{k=1}^{n}\left(F\left(z_{k}\right)-F\left(z_{k-1}\right)\right)=F\left(z_{n}\right)-F\left(z_{0}\right)
$$

a value which, again, depends only on the the initial and final points of C.

Now suppose the value of

$$
\int_{C} f(z) d z
$$

depends only on the initial and final points of C. Let $z_{0} \in D$ and define

$$
F(z)=\int_{C} f(s) d s
$$

for any contour C in D with intial point z_{0} and final point z. Since this value does not depend the particular contour C, we will denote the integral by

$$
\int_{z_{0}}^{z} f(s) d s
$$

We need to show that $F^{\prime}(z)=f(z)$ for any $z \in D$. Choose a γ neighborhood of z lying in D and a Δz with $0<|\Delta z|<\gamma$. Then

$$
\begin{aligned}
F(z+\Delta z)-F(z) & =\int_{z_{0}}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s \\
& =\int_{z_{0}}^{z} f(s) d s+\int_{z}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s \\
& =\int_{z}^{z+\Delta z} f(s) d s .
\end{aligned}
$$

Now

$$
\int_{z}^{z+\Delta z} d s=\left.z\right|_{z} ^{z+\Delta z}=\Delta z
$$

and so

$$
f(z)=f(z) \frac{\int_{z}^{z+\Delta z} d s}{\Delta z}=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s
$$

Hence

$$
\begin{aligned}
\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z) & =\frac{1}{\Delta z}\left(\int_{z}^{z+\Delta z} f(s) d s-\int_{z}^{z+\Delta z} f(z) d s\right) \\
& =\frac{1}{\Delta z} \int_{z}^{z+\Delta z}(f(s)-f(z)) d s
\end{aligned}
$$

Now given $\epsilon>0$, choose an $\alpha>0$ such that

$$
|f(s)-f(z)|<\epsilon
$$

whenver $|s-z|<\alpha$. Let δ be the smaller of γ and α. Then, whenever $|\Delta z|<\delta$, we have

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|}(\epsilon|\Delta z|)=\epsilon .
$$

Hence

$$
\lim _{\Delta z \rightarrow 0}\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=0
$$

and so

$$
F^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z)
$$

Theorem 27.2. Suppose $D \subset \mathbb{C}$ is a domain and $f: D \rightarrow \mathbb{C}$ is continuous on D. Then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

whenever $C_{1}, C_{2} \subset D$ have the same initial point z_{1} and the same final point z_{2} if and only if

$$
\int_{C} f(z) d z=0
$$

whenever $C \subset D$ is a closed contour.
Proof. Suppose the value of

$$
\int_{C} f(z) d z
$$

depends only on the initial and final points of C. Given a closed contour C, let z_{1} and z_{2} be distinct points on C. Write $C=C_{1}-C_{2}$, where C_{1} and C_{2} are the two parts of C having initial point z_{1} and final point z_{2}. Then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

and so

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0 .
$$

Now suppose

$$
\int_{C} f(z) d z=0
$$

for any closed contour $C \in D$. Let C_{1} and C_{2} be two contours in D, both having initial point z_{1} and final point z_{2}. Then $C=C_{1}-C_{2}$, and so

$$
0=\int_{C} f(z) d z=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z
$$

Thus

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

27.2 Examples

Example 27.1. For any contour C with initial point 0 and final point $1+i$,

$$
\int_{C} z d z=\int_{0}^{1+i} z d z=\left.\frac{1}{2} z^{2}\right|_{0} ^{1+i}=\frac{1}{2}(1+i)^{2}=i
$$

Example 27.2. Since

$$
F(z)=-\frac{1}{z}
$$

is an antiderivative of

$$
f(z)=\frac{1}{z^{2}}
$$

on the domain $D=\{z \in \mathbb{C}: z \neq 0\}$, it follows that

$$
\int_{C} \frac{1}{z^{2}} d z=0
$$

for any closed contour C in D.
Example 27.3. Let C_{1} be the right half of the circle $|z|=4$, extending from $-4 i$ to $4 i$. Then

$$
\int_{C_{1}} \frac{1}{z} d z=\left.\log (z)\right|_{-4 i} ^{4 i}=\left(\ln (4)+i \frac{\pi}{2}\right)-\left(\ln (4)-i \frac{\pi}{2}\right)=\pi i .
$$

Now let C_{2} be the lefthand side of the same circle, starting at $4 i$ and ending at $-4 i$. Although we could not use $\log (z)$ to evaluate

$$
\int_{C_{2}} \frac{1}{z} d z
$$

we could use another branch of $\log (z)$, for example,

$$
\log (z)=\ln (r)+i \theta, 0<\theta<2 \pi
$$

Using this branch, we have

$$
\int_{C_{2}} \frac{1}{z} d z=\left.\log (z)\right|_{4 i} ^{-4 i}=\left(\ln (4)+i \frac{3 \pi}{2}\right)-\left(\ln (4)+i \frac{\pi}{2}\right)=\pi i
$$

Note that $C=C_{1}+C_{2}$ is the circle $|z|=4$, and we have

$$
\int_{C} \frac{1}{z} d z=\int_{C_{1}} \frac{1}{z} d z+\int_{C_{2}} \frac{1}{z} d z=\pi i+\pi i=2 \pi i
$$

