Lecture 26:
 The Modulus of an Integral

Dan Sloughter
Furman University
Mathematics 39

April 23, 2004

26.1 An upper bound

Proposition 26.1. If $|f(z)| \leq M$ for all $z \in C$, where C is a contour $z(t)$, $a \leq t \leq b$, and L is the length of C, then

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

Proof. Since

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

we have

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & \leq \int_{a}^{b}|f(z(t))|\left|z^{\prime}(t)\right| d t \\
& \leq \int_{a}^{b} M\left|z^{\prime}(t)\right| d t \\
& =M \int_{a}^{b}\left|z^{\prime}(t)\right| d t \\
& =M L
\end{aligned}
$$

Note that such an M always exists since we assume that $f(z(t))$ is a piecewise continuous function on a closed interval $[a, b]$ (this is the extreme value theorem from calculus).

Example 26.1. Consider

$$
\int_{C} \frac{z^{2}+1}{z^{6}+1} d z
$$

where C is the arc of the circle $|z|=3$ from 3 to -3 . Now for z on C,

$$
\left|z^{2}+1\right| \leq\left|z^{2}\right|+|1|=|z|^{2}+1=9+1=10
$$

and

$$
\left|z^{6}+1\right| \geq\left||z|^{6}-|1|\right|=728 .
$$

Hence

$$
\left|\frac{z^{2}+1}{z^{6}+1}\right|=\frac{\left|z^{2}+1\right|}{\left|z^{6}+1\right|} \leq \frac{10}{728}=\frac{5}{364} .
$$

Since C has length 3π, it follows that

$$
\left|\int_{C} \frac{z^{2}+1}{z^{6}+1} d z\right| \leq \frac{15 \pi}{364}
$$

Example 26.2. Now consider

$$
\int_{C} \frac{z^{2}+1}{z^{6}+1} d z
$$

where C is the arc of the circle $|z|=R$ from R to $-R, R>1$. We have, for z on C,

$$
\left|z^{2}+1\right| \leq R^{2}+1
$$

and

$$
\left|z^{6}+1\right| \geq R^{6}-1
$$

and so

$$
\left|\frac{z^{2}+1}{z^{6}+1}\right| \leq \frac{R^{2}+1}{R^{6}-1}
$$

Thus

$$
\left|\int_{C} \frac{z^{2}+1}{z^{6}+1} d z\right| \leq \frac{\left(R^{2}+1\right) R \pi}{R^{6}-1}
$$

Now

$$
\lim _{R \rightarrow \infty} \frac{\left(R^{2}+1\right) R \pi}{R^{6}-1}=\lim _{R \rightarrow \infty} \frac{\frac{\pi}{R^{3}}+\frac{\pi}{R^{5}}}{1-\frac{1}{R^{6}}}=0
$$

and so

$$
\lim _{R \rightarrow \infty}\left|\int_{C} \frac{z^{2}+1}{z^{6}+1} d z\right|=0
$$

Hence

$$
\lim _{R \rightarrow \infty} \int_{C} \frac{z^{2}+1}{z^{6}+1} d z=0
$$

