Lecture 25:
 Contour Integrals

Dan Sloughter
Furman University
Mathematics 39

April 20, 2004

25.1 Contour integrals

Definition 25.1. Suppose $z(t), a \leq t \leq b$, parametrizes a contour C and f is complex-valued function for which $f(z(t))$ is piecewise continuous on $[a, b]$. We call

$$
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

the contour integral of f along C.
Example 25.1. We will evaluate

$$
\int_{C} z^{2} d z
$$

where C is parametrized by $z(t)=e^{i t}, 0 \leq t \leq \pi$. We have

$$
\begin{aligned}
\int_{C} z^{2} d z & =\int_{0}^{\pi} e^{i 2 t}\left(i e^{i t}\right) d t \\
& =i \int_{0}^{\pi} e^{3 i t} d t \\
& =\left.\frac{1}{3} e^{3 i t}\right|_{0} ^{\pi} \\
& =\frac{1}{3}(-1-1) \\
& =-\frac{2}{3}
\end{aligned}
$$

From our earlier discussion of integrals, it follows easily that if $c \in \mathbb{C}$ is a constant and f and g are complex-valued functions, then

$$
\int_{C} c f(z) d z=c \int_{C} f(z) d z
$$

and

$$
\int_{C}(f(z)+g(z)) d z=\int_{C} f(z) d z+\int_{C} g(z) d z .
$$

Also, if C_{1} and C_{2} are two contours with the terminal point of C_{1} the same as the initial point of C_{2}, and we let C denote the contour formed by C_{1} and C_{2} together, then

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

We may denote C by $C_{1}+C_{2}$, in which case we write

$$
\int_{C_{1}+C_{2}} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z .
$$

Note that if $z(t), a \leq t \leq b$, parametrizes C, then

$$
w(t)=z(-t),-b \leq t \leq-a
$$

parametrizes C with the opposite orientation. We denote this contour by $-C$. It follows that, using the substitution $s=-t$,

$$
\begin{aligned}
\int_{-C} f(z) d z & =\int_{-b}^{-a} f(w(t)) w^{\prime}(t) d t \\
& =-\int_{-b}^{-a} f(z(-t)) z^{\prime}(-t) d t \\
& =\int_{b}^{a} f\left(z(s) z^{\prime}(s) d s\right. \\
& =-\int_{a}^{b} f(z(s)) z^{\prime}(s) d s \\
& =-\int_{C} f(z) d z
\end{aligned}
$$

Note that if C_{1} and C_{2} have the same terminal point, then the terminal point of C_{1} is the same as the initial point of $-C_{2}$. Hence we may consider the contour $C_{1}+\left(-C_{1}\right)$, which we, of course, denote $C_{1}-C_{2}$. We have

$$
\int_{C_{1}-C_{2}} f(z) d z=\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z
$$

25.2 Examples

Example 25.2. Let $f(x+i y)=x y+i(x+y)$ and let C be the triangle with vertices at $(0,0),(1,0)$ and $(1,1)$, oriented in the counterclockwise direction. To evaluate $\int_{C} f(z) d z$, we will write C as $C_{1}+C_{2}-C_{3}$, where C_{1} has parametrization

$$
z=x, 0 \leq x \leq 1,
$$

C_{2} has parametrization

$$
z=1+i y, 0 \leq y \leq 1,
$$

and C_{3} has parametrization

$$
z=x+i x, 0 \leq x \leq 1
$$

Then

$$
\begin{gathered}
\int_{C_{1}} f(z) d z=\int_{0}^{1} i x d x=i \frac{1}{2} \\
\int_{C_{2}} f(z) d z=\int_{0}^{1}(y+i(1+y)) i d y=-\frac{3}{2}+i \frac{1}{2}
\end{gathered}
$$

and

$$
\int_{C_{3}} f(z) d z=\int_{0}^{1}\left(x^{2}+i 2 x\right)(1+i) d x=\left(\frac{1}{3}+i\right)(1+i)=-\frac{2}{3}+i \frac{4}{3} .
$$

Hence

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z-\int_{C_{3}} f(z) d z \\
& =i \frac{1}{2}-\frac{3}{2}+i \frac{1}{2}+\frac{2}{3}-i \frac{4}{3} \\
& =-\frac{5}{6}-\frac{1}{3} i
\end{aligned}
$$

Note that

$$
\int_{C_{1}+C_{2}} f(z) d z=i \frac{1}{2}-\frac{3}{2}+i \frac{1}{2}=-\frac{3}{2}+i \neq \int_{C_{3}} f(z) d z
$$

even though $C_{1}+C_{2}$ and C_{3} have the same initial and final points. Hence, although the value of a contour integral does not depend on the specific parametrization of a a given arc (see the homework), it may depend on the curve chosen to get from the intitial point to the final point.
Example 25.3. Let C, with parametrization $z(t), a \leq t \leq b$, be a smooth arc and let $z_{1}=z(a)$ and $z_{2}=z(b)$. Then

$$
\begin{aligned}
\int_{C} z^{2} d z & =\int_{a}^{b}(z(t))^{2} z^{\prime}(t) d t \\
& =\left.\frac{z(t)^{3}}{3}\right|_{a} ^{b} \\
& =\frac{z_{2}^{3}-z_{1}^{3}}{3} .
\end{aligned}
$$

Note that this means that this contour integral is independent of the particular curve starting at z_{1} and ending at z_{2}. For example, for any curve C starting at $z_{1}=1$ and ending at $z_{2}=-1$, we have

$$
\int_{C} z^{2} d z=\frac{(-1)^{3}-1^{3}}{3}=-\frac{2}{3}
$$

Recall that this is the result we obtained in our first example for the particular $\operatorname{arc} z=e^{i t}, 0 \leq t \leq \pi$. This result will also hold for any contour C. Moreover, it follows that if C is a closed contour, then

$$
\int_{C} z^{2} d z=0
$$

Example 25.4. Let C be the unit circle with parametrization $z=e^{i t}$. Then

$$
\int_{C} \frac{1}{z} d z=\int_{0}^{2 \pi} e^{-i t}\left(i e^{i t}\right) d t=\int_{0}^{2 \pi} i d t=2 \pi i
$$

Does this contradict our observations in the previous example and the fact that

$$
\frac{d}{d z} \log (z)=\frac{1}{z} ?
$$

