Lecture 24:
 Contours

Dan Sloughter
Furman University
Mathematics 39

April 19, 2004

24.1 Curves

Definition 24.1. Suppose $x:[a, b] \rightarrow \mathbb{R}$ and $y:[a, b] \rightarrow \mathbb{R}$ are both continuous and let $z(t)=x(t)+i y(t)$. We call the set

$$
C=\{w \in \mathbb{C}: w=z(t), a \leq t \leq b\}
$$

an arc. We call C a simple arc if $z\left(t_{1}\right) \neq z\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$, and we call C a simple closed curve, or a Jordan curve, if $z(b)=z(a)$ and $z\left(t_{1}\right) \neq z\left(t_{2}\right)$ whenever $a<t_{1}<b, a<t_{2}<b$, and $t_{1} \neq t_{2}$.

To be precise, an arc is the set of points C along with the parametrization $z(t)$.

Example 24.1. The arc described by $z(t)=e^{i t}, 0 \leq t \leq 2 \pi$, is the unit circle centered at the origin, and is a simple closed curve. The arc described by $w(t)=e^{-i t}, 0 \leq t \leq 2 \pi$, is the same set of points, but is not the same as the previous arc because the parametrization is different.

Example 24.2. More generally, for any $z_{0} \in \mathbb{C}$ and $R>0$, the arc described by $z(t)=z_{0}+R e^{i t}, 0 \leq t \leq 2 \pi$, is a circle of radius R centered at z_{0}.

Example 24.3. Note that the arc described by $z(t)=e^{i 2 t}, 0 \leq t \leq 2 \pi$, is, as a set of points, the unit circle centered at the origin, but is not a simple closed curve since the circle is traversed twice as t goes from 0 to 2π.

24.2 Arclength

Suppose $z(t)$ describes an $\operatorname{arc} C$ for $a \leq t \leq b$. If we divide $[a, b]$ into n subintervals, each of length

$$
\Delta t=\frac{b-a}{n}
$$

with endpoints $a=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=b$, then

$$
\sqrt{\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)^{2}+\left(y\left(t_{i}\right)-y\left(t_{i-1}\right)\right)^{2}}
$$

approximates the length of the arc from $z\left(t_{i-1}\right)$ to $z\left(t_{i}\right)$. If L is the length of C, then

$$
\begin{aligned}
L & \approx \sum_{i=1}^{n} \sqrt{\left(x\left(t_{i}\right)-x\left(t_{i-1}\right)\right)^{2}+\left(y\left(t_{i}\right)-y\left(t_{i-1}\right)\right)^{2}} \\
& =\sqrt{\left(\frac{x\left(t_{i}\right)-x\left(t_{i-1}\right)}{\Delta t}\right)^{2}+\left(\frac{y\left(t_{i}\right)-y\left(t_{i-1}\right)}{\Delta t}\right)^{2}} \Delta t
\end{aligned}
$$

Letting $n \rightarrow \infty$ (equivalently, $\Delta t \rightarrow 0$), we expect

$$
L=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\int_{a}^{b}\left|z^{\prime}(t)\right| d t
$$

Example 24.4. If L is the length of the curve described by $z(t)=e^{i t}$, $0 \leq t \leq 2 \pi$, then $\left|z^{\prime}(t)\right|=\left|i e^{i t}\right|=1$, and so

$$
L=\int_{0}^{2 \pi} 1 d t=2 \pi
$$

Now suppose $z(t), a \leq t \leq b$, describes an arc C and $\varphi:[c, d] \rightarrow[a, b]$ maps $[c, d]$ onto $[a, b]$. Moreover, suppose φ is continuous on $[c, c]$, differentiable on (c, d), and $\varphi^{\prime}(t)>0$ for all $t \in(c, d)$. Then

$$
Z(t)=z(\varphi(t)), c \leq t \leq d
$$

also describes (that is, parametrizes) the $\operatorname{arc} C$. If L is the length of C, then, as described above,

$$
L=\int_{a}^{b}\left|z^{\prime}(t)\right| d t
$$

If we make the substitution $t=\varphi(s)$, then $d t=\varphi^{\prime}(s) d s$, and so

$$
L=\int_{c}^{d}\left|z^{\prime}(\varphi(s))\right| \varphi^{\prime}(s) d s=\int_{c}^{d}\left|Z^{\prime}(s)\right| d s
$$

where we have used that fact that

$$
\left|Z^{\prime}(s)\right|=\left|z^{\prime}(\varphi(s)) \varphi^{\prime}(s)\right|=\left|z^{\prime}(\varphi(s))\right| \varphi^{\prime}(s)
$$

because of the chain rule and the fact that $\varphi^{\prime}(s)>0$ for all s. Hence, as we should expect, the length of an arc does not depend on the parametrization.

Example 24.5. Note that $Z(t)=e^{i 2 t}, 0 \leq t \leq \pi$, describes the same set of points, namely, the unit circle centered at the origin, as in the previous example. This time $Z^{\prime}(t)=2 i e^{i 2 t}$, and so $\left|Z^{\prime}(t)\right|=2$ and we find

$$
L=\int_{0}^{\pi} 2 d t=2 \pi
$$

Note, however, that if we had $0 \leq t \leq 2 \pi$, then we would find

$$
L=\int_{0}^{2 \pi} 2 d t=4 \pi
$$

because this parametrization of the unit circle traverses the circle twice.

24.3 Smooth curves and contours

Suppose $z(t), a \leq t \leq b$, describes an $\operatorname{arc} C$ and $z^{\prime}(t) \neq 0$ for all $t \in(a, b)$. In multi-variable calculus, one interprets $z^{\prime}(t)$ geometrically as a vector tangent to C at $z(t)$, and then defines

$$
T=\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}
$$

to be the unit tangent vector. If $z^{\prime}(t)$ is continuous, then T varies continuously, and we think of the curve as being smooth.

Definition 24.2. We say an arc $z(t)$ is smooth if $z^{\prime}(t)$ is continuous on $[a, b]$ and $z^{\prime}(t) \neq 0$ for all $t \in(a, b)$.

We call a finite number of smooth arcs joined end to end a contour. If $z(t), a \leq t \leq b$, parametrizes a contour C, then $z(t)$ is continuous and $z^{\prime}(t)$ is piecewise continuous. Moreover, if $z(a)=z(b)$ but $z\left(t_{1}\right) \neq z\left(t_{2}\right)$ for all $t_{1}, t_{2} \in(a, b)$, then we call C a simple closed contour.

The following result, the Jordan curve theorem, appears intuitively obvious, but is surprisingly hard to prove.

Theorem 24.1. If $z(t)$ parametrizes a simple closed contour C, then

$$
\mathbb{C}=C \cup I \cup E
$$

where (1) C, I, and E are disjoint; (2) I is bounded; (3) E is unbounded; and (4) C is the boundary of both I and E.

We call I the interior of C and E the exterior of C.

