Lecture 24: Contours

Dan Sloughter Furman University Mathematics 39

April 19, 2004

24.1 Curves

Definition 24.1. Suppose $x : [a, b] \to \mathbb{R}$ and $y : [a, b] \to \mathbb{R}$ are both continuous and let z(t) = x(t) + iy(t). We call the set

 $C = \{ w \in \mathbb{C} : w = z(t), a \le t \le b \}$

an arc. We call C a simple arc if $z(t_1) \neq z(t_2)$ whenever $t_1 \neq t_2$, and we call C a simple closed curve, or a Jordan curve, if z(b) = z(a) and $z(t_1) \neq z(t_2)$ whenever $a < t_1 < b$, $a < t_2 < b$, and $t_1 \neq t_2$.

To be precise, an arc is the set of points C along with the parametrization z(t).

Example 24.1. The arc described by $z(t) = e^{it}$, $0 \le t \le 2\pi$, is the unit circle centered at the origin, and is a simple closed curve. The arc described by $w(t) = e^{-it}$, $0 \le t \le 2\pi$, is the same set of points, but is not the same as the previous arc because the parametrization is different.

Example 24.2. More generally, for any $z_0 \in \mathbb{C}$ and R > 0, the arc described by $z(t) = z_0 + Re^{it}$, $0 \le t \le 2\pi$, is a circle of radius R centered at z_0 .

Example 24.3. Note that the arc described by $z(t) = e^{i2t}$, $0 \le t \le 2\pi$, is, as a set of points, the unit circle centered at the origin, but is not a simple closed curve since the circle is traversed twice as t goes from 0 to 2π .

24.2 Arclength

Suppose z(t) describes an arc C for $a \leq t \leq b$. If we divide [a, b] into n subintervals, each of length

$$\Delta t = \frac{b-a}{n}$$

with endpoints $a = t_0 < t_1 < t_2 < \cdots < t_n = b$, then

$$\sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}$$

approximates the length of the arc from $z(t_{i-1})$ to $z(t_i)$. If L is the length of C, then

$$L \approx \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}$$
$$= \sqrt{\left(\frac{x(t_i) - x(t_{i-1})}{\Delta t}\right)^2 + \left(\frac{y(t_i) - y(t_{i-1})}{\Delta t}\right)^2} \Delta t.$$

Letting $n \to \infty$ (equivalently, $\Delta t \to 0$), we expect

$$L = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{a}^{b} |z'(t)| dt.$$

Example 24.4. If L is the length of the curve described by $z(t) = e^{it}$, $0 \le t \le 2\pi$, then $|z'(t)| = |ie^{it}| = 1$, and so

$$L = \int_0^{2\pi} 1dt = 2\pi.$$

Now suppose z(t), $a \leq t \leq b$, describes an arc C and $\varphi : [c,d] \to [a,b]$ maps [c,d] onto [a,b]. Moreover, suppose φ is continuous on [c,c], differentiable on (c,d), and $\varphi'(t) > 0$ for all $t \in (c,d)$. Then

$$Z(t) = z(\varphi(t)), c \le t \le d,$$

also describes (that is, parametrizes) the arc C. If L is the length of C, then, as described above,

$$L = \int_{a}^{b} |z'(t)| dt.$$

If we make the substitution $t = \varphi(s)$, then $dt = \varphi'(s)ds$, and so

$$L = \int_c^d |z'(\varphi(s))|\varphi'(s)ds = \int_c^d |Z'(s)|ds,$$

where we have used that fact that

$$|Z'(s)| = |z'(\varphi(s))\varphi'(s)| = |z'(\varphi(s))|\varphi'(s)|$$

because of the chain rule and the fact that $\varphi'(s) > 0$ for all s. Hence, as we should expect, the length of an arc does not depend on the parametrization.

Example 24.5. Note that $Z(t) = e^{i2t}$, $0 \le t \le \pi$, describes the same set of points, namely, the unit circle centered at the origin, as in the previous example. This time $Z'(t) = 2ie^{i2t}$, and so |Z'(t)| = 2 and we find

$$L = \int_0^{\pi} 2dt = 2\pi$$

Note, however, that if we had $0 \le t \le 2\pi$, then we would find

$$L = \int_0^{2\pi} 2dt = 4\pi$$

because this parametrization of the unit circle traverses the circle twice.

24.3 Smooth curves and contours

Suppose z(t), $a \le t \le b$, describes an arc C and $z'(t) \ne 0$ for all $t \in (a, b)$. In multi-variable calculus, one interprets z'(t) geometrically as a vector tangent to C at z(t), and then defines

$$T = \frac{z'(t)}{|z'(t)|}$$

to be the unit tangent vector. If z'(t) is continuous, then T varies continuously, and we think of the curve as being smooth.

Definition 24.2. We say an arc z(t) is *smooth* if z'(t) is continuous on [a, b] and $z'(t) \neq 0$ for all $t \in (a, b)$.

We call a finite number of smooth arcs joined end to end a *contour*. If z(t), $a \le t \le b$, parametrizes a contour C, then z(t) is continuous and z'(t) is piecewise continuous. Moreover, if z(a) = z(b) but $z(t_1) \ne z(t_2)$ for all $t_1, t_2 \in (a, b)$, then we call C a simple closed contour.

The following result, the *Jordan curve theorem*, appears intuitively obvious, but is surprisingly hard to prove.

Theorem 24.1. If z(t) parametrizes a simple closed contour C, then

$$\mathbb{C} = C \cup I \cup E$$

where (1) C, I, and E are disjoint; (2) I is bounded; (3) E is unbounded; and (4) C is the boundary of both I and E.

We call I the *interior* of C and E the *exterior* of C.