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24.1 Curves

Definition 24.1. Suppose x : [a, b] → R and y : [a, b] → R are both contin-
uous and let z(t) = x(t) + iy(t). We call the set

C = {w ∈ C : w = z(t), a ≤ t ≤ b}

an arc. We call C a simple arc if z(t1) 6= z(t2) whenever t1 6= t2, and we call
C a simple closed curve, or a Jordan curve, if z(b) = z(a) and z(t1) 6= z(t2)
whenever a < t1 < b, a < t2 < b, and t1 6= t2.

To be precise, an arc is the set of points C along with the parametrization
z(t).

Example 24.1. The arc described by z(t) = eit, 0 ≤ t ≤ 2π, is the unit
circle centered at the origin, and is a simple closed curve. The arc described
by w(t) = e−it, 0 ≤ t ≤ 2π, is the same set of points, but is not the same as
the previous arc because the parametrization is different.

Example 24.2. More generally, for any z0 ∈ C and R > 0, the arc described
by z(t) = z0 + Reit, 0 ≤ t ≤ 2π, is a circle of radius R centered at z0.

Example 24.3. Note that the arc described by z(t) = ei2t, 0 ≤ t ≤ 2π, is,
as a set of points, the unit circle centered at the origin, but is not a simple
closed curve since the circle is traversed twice as t goes from 0 to 2π.
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24.2 Arclength

Suppose z(t) describes an arc C for a ≤ t ≤ b. If we divide [a, b] into n
subintervals, each of length

∆t =
b− a

n

with endpoints a = t0 < t1 < t2 < · · · < tn = b, then√
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2

approximates the length of the arc from z(ti−1) to z(ti). If L is the length of
C, then

L ≈
n∑

i=1

√
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2

=

√(
x(ti)− x(ti−1)

∆t

)2

+

(
y(ti)− y(ti−1)

∆t

)2

∆t.

Letting n →∞ (equivalently, ∆t → 0), we expect

L =

∫ b

a

√
(x′(t))2 + (y′(t))2dt =

∫ b

a

|z′(t)|dt.

Example 24.4. If L is the length of the curve described by z(t) = eit,
0 ≤ t ≤ 2π, then |z′(t)| = |ieit| = 1, and so

L =

∫ 2π

0

1dt = 2π.

Now suppose z(t), a ≤ t ≤ b, describes an arc C and ϕ : [c, d] → [a, b]
maps [c, d] onto [a, b]. Moreover, suppose ϕ is continuous on [c, c], differen-
tiable on (c, d), and ϕ′(t) > 0 for all t ∈ (c, d). Then

Z(t) = z(ϕ(t)), c ≤ t ≤ d,

also describes (that is, parametrizes) the arc C. If L is the length of C, then,
as described above,

L =

∫ b

a

|z′(t)|dt.
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If we make the substitution t = ϕ(s), then dt = ϕ′(s)ds, and so

L =

∫ d

c

|z′(ϕ(s))|ϕ′(s)ds =

∫ d

c

|Z ′(s)|ds,

where we have used that fact that

|Z ′(s)| = |z′(ϕ(s))ϕ′(s)| = |z′(ϕ(s))|ϕ′(s)

because of the chain rule and the fact that ϕ′(s) > 0 for all s. Hence, as we
should expect, the length of an arc does not depend on the parametrization.

Example 24.5. Note that Z(t) = ei2t, 0 ≤ t ≤ π, describes the same set
of points, namely, the unit circle centered at the origin, as in the previous
example. This time Z ′(t) = 2iei2t, and so |Z ′(t)| = 2 and we find

L =

∫ π

0

2dt = 2π.

Note, however, that if we had 0 ≤ t ≤ 2π, then we would find

L =

∫ 2π

0

2dt = 4π

because this parametrization of the unit circle traverses the circle twice.

24.3 Smooth curves and contours

Suppose z(t), a ≤ t ≤ b, describes an arc C and z′(t) 6= 0 for all t ∈ (a, b). In
multi-variable calculus, one interprets z′(t) geometrically as a vector tangent
to C at z(t), and then defines

T =
z′(t)

|z′(t)|

to be the unit tangent vector. If z′(t) is continuous, then T varies continu-
ously, and we think of the curve as being smooth.

Definition 24.2. We say an arc z(t) is smooth if z′(t) is continuous on [a, b]
and z′(t) 6= 0 for all t ∈ (a, b).
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We call a finite number of smooth arcs joined end to end a contour. If
z(t), a ≤ t ≤ b, parametrizes a contour C, then z(t) is continuous and z′(t)
is piecewise continuous. Moreover, if z(a) = z(b) but z(t1) 6= z(t2) for all
t1, t2 ∈ (a, b), then we call C a simple closed contour.

The following result, the Jordan curve theorem, appears intuitively obvi-
ous, but is surprisingly hard to prove.

Theorem 24.1. If z(t) parametrizes a simple closed contour C, then

C = C ∪ I ∪ E

where (1) C, I, and E are disjoint; (2) I is bounded; (3) E is unbounded;
and (4) C is the boundary of both I and E.

We call I the interior of C and E the exterior of C.
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