Lecture 23:
 Complex Functions of a Real Variable

Dan Sloughter
Furman University
Mathematics 39

April 14, 2004

23.1 Derivatives

Definition 23.1. Suppose $S \subset \mathbb{R}$ and $f: S \rightarrow \mathbb{C}$ is defined on an open interval containing the point t_{0}. If

$$
f^{\prime}\left(t_{0}\right)=\lim _{\Delta t \rightarrow 0} \frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t}
$$

exists, we say f is differentiable at t_{0} and we call $f^{\prime}\left(t_{0}\right)$ the derivative of f at t_{0}.

Proposition 23.1. If $f: \mathbb{R} \rightarrow \mathbb{C}$ with $f(t)=u(t)+i v(t)$, then f is differentiable at t_{0} if and only if u and v are differentiable at t_{0}, in which case

$$
f^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)
$$

Proof. The result follows from the observation that

$$
\begin{aligned}
\frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t} & =\frac{\left(u\left(t_{0}+\Delta t\right)+i v\left(t_{0}+\Delta t\right)\right)-\left(u\left(t_{0}\right)+i v\left(t_{0}\right)\right.}{\Delta t} \\
& =\frac{u\left(t_{0}+\Delta t\right)-u\left(t_{0}\right)}{\Delta t}+i \frac{v\left(t_{0}+\Delta t\right)-v\left(t_{0}\right)}{\Delta t}
\end{aligned}
$$

Example 23.1. If

$$
w(t)=\sin (3 t)-i \cos (4 t)
$$

then

$$
w^{\prime}(t)=3 \cos (3 t)+4 i \sin (4 t)
$$

The following results follow as before.
Proposition 23.2. Suppose $c \in \mathbb{C}$ is a constant, $U \subset \mathbb{R}$, and $w: U \rightarrow \mathbb{C}$ and $s: U \rightarrow \mathbb{C}$ are differentiable. Then

$$
\begin{gathered}
\frac{d}{d t}(c w(t))=c w^{\prime}(t) \\
\frac{d}{d t}(w(t)+s(t))=w^{\prime}(t)+s^{\prime}(t) \\
\frac{d}{d t} w(t) s(t)=w(t) s^{\prime}(t)+s(t) w^{\prime}(t)
\end{gathered}
$$

and, provided $s(t) \neq 0$,

$$
\frac{d}{d t}\left(\frac{w(t)}{s(t)}\right)=\frac{s(t) w^{\prime}(t)-w(t) s^{\prime}(t)}{(s(t))^{2}}
$$

Proposition 23.3. If w is differentiable, then

$$
\frac{d}{d t} e^{w(t)}=w^{\prime}(t) e^{w(t)}
$$

Proof. If $w(t)=u(t)+i v(t)$, then

$$
e^{w(t)}=e^{u(t)} \cos (v(t))+i e^{u(t)} \sin (v(t))
$$

and so

$$
\begin{aligned}
\frac{d}{d t} e^{w(t)}= & -e^{u(t)} \sin (v(t)) v^{\prime}(t)+e^{u(t)} \cos (v(t)) u^{\prime}(t) \\
& +i\left(e^{u(t)} \cos \left(v(t) v^{\prime}(t)+e^{u(t)} \sin (v(t)) u^{\prime}(t)\right)\right. \\
= & u^{\prime}(t) e^{u(t)}\left(\cos (v(t)+i \sin (v(t)))+v^{\prime}(t) e^{u(t)}(-\sin (v(t)+i \cos (v(t)))\right. \\
= & u^{\prime}(t) e^{u(t)} e^{i v(t)}+i v^{\prime}(t) e^{u(t)}(\cos (v(t))+i \sin (v(t))) \\
= & u^{\prime}(t) e^{u(t)} e^{i v(t)}+i v^{\prime}(t) e^{u(t)} e^{i v(t)} \\
= & \left(u^{\prime}(t)+i v^{\prime}(t)\right) e^{u(t)+i v(t)} \\
= & w^{\prime}(t) e^{w(t)}
\end{aligned}
$$

Example 23.2. We have

$$
\frac{d}{d t} t^{2} e^{4 i t}=t^{2}\left(4 i e^{4 i t}\right)+2 t e^{4 i t}=\left(2 t+4 i t^{2}\right) e^{4 i t}
$$

23.2 Integration

Definition 23.2. Suppose $u:[a, b] \rightarrow \mathbb{R}$ and $v:[a, b] \rightarrow \mathbb{R}$ are both integrable and let $w(t)=u(t)+i v(t)$. Then we call

$$
\int_{a}^{b} w(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

the definite integral of w on $[a, b]$.
Example 23.3. If $w(t)=t^{2}+i \sin (\pi t)$, then

$$
\int_{0}^{1} w(t) d t=\int_{0}^{1} t^{2} d t+i \int_{0}^{1} \sin (\pi t) d t=\frac{1}{3}+i \frac{2}{\pi}
$$

Note that if $W^{\prime}(t)=w(t)$ and we let $w(t)=u(t)+i v(t)$ and $W(t)=$ $U(t)+i V(t)$, then $U^{\prime}(t)=u(t)$ and $V^{\prime}(t)=v(t)$, and so

$$
\begin{aligned}
\int_{a}^{b} w(t) d t & =\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t \\
& =U(b)-U(a)+i(V(b)-V(a)) \\
& =(U(b)+i V(b))-(U(a)+i V(a)) \\
& =W(b)-W(a)
\end{aligned}
$$

Example 23.4. It follows that

$$
\int_{0}^{2} e^{4 i t} d t=\left.\frac{1}{4 i} e^{4 i t}\right|_{0} ^{2}=-\frac{i}{4}\left(e^{8 i}-1\right)
$$

Proposition 23.4. If $w(t)$ is integrable on $[a, b]$, then

$$
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t
$$

Proof. The inequality clearly holds if

$$
\int_{a}^{b} w(t) d t=0
$$

So suppose

$$
\int_{a}^{b} w(t) d t=r_{0} e^{i \theta_{0}}
$$

where $r_{0}>0$. Then

$$
\left|\int_{a}^{b} w(t) d t\right|=r_{0}
$$

and

$$
\begin{aligned}
r_{0} & =\frac{1}{e^{i \theta_{0}}} \int_{a}^{b} w(t) d t \\
& =\int_{a}^{b} e^{-i \theta_{0}} w(t) d t \\
& =\operatorname{Re} \int_{a}^{b} e^{-i \theta_{0}} w(t) d t \\
& =\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} w(t)\right) d t \\
& \leq \int_{a}^{b}\left|e^{-i \theta_{0}} w(t)\right| d t \\
& =\int_{a}^{b}\left|e^{-i \theta_{0}}\right||w(t)| d t \\
& =\int_{a}^{b}|w(t)| d t
\end{aligned}
$$

