Lecture 22:
 Inverse Functions

Dan Sloughter
Furman University
Mathematics 39

April 13, 2004

22.1 Inverse trigonometric functions

Given $z \in \mathbb{C}$, we would like to find $w \in \mathbb{C}$ such that $z=\sin (w)$. That is, we want to solve

$$
z=\frac{e^{i w}-e^{-i w}}{2 i}
$$

It follows that

$$
2 i z e^{i w}=e^{2 i w}-e^{0}=\left(e^{i w}\right)^{2}-1,
$$

or, equivalently,

$$
\left(e^{i w}\right)^{2}-2 i z e^{i w}-1=0
$$

Using the quadratic formula, we find that

$$
e^{i w}=\frac{2 i z+\left(-4 z^{2}+4\right)^{\frac{1}{2}}}{2}=i z+\left(1-z^{2}\right)^{\frac{1}{2}} .
$$

Hence

$$
w=-i \log \left(i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right)
$$

It follows that we may define the inverse sine function, or arcsine function, as

$$
\sin ^{-1}(z)=-i \log \left(i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right)
$$

which we may also denote as $\arcsin (z)$. Note that this is a multi-valued function, with values depending both on the branch of the square root function and the branch of the logarithmic function chosen.

Example 22.1. Note that

$$
\sin ^{-1}(1)=-i \log (i)=-i\left(i\left(\frac{\pi}{2}+2 n \pi\right)\right)=\frac{\pi}{2}+2 n \pi, n=0, \pm 1, \pm 2, \ldots
$$

as we should expect.
Example 22.2. When $z=0$, then $\left(1-z^{2}\right)^{\frac{1}{2}}= \pm 1$. Since

$$
\log (1)=2 n \pi i, n=0, \pm 1, \pm 2, \ldots
$$

and

$$
\log (-1)=i(\pi+2 n \pi)=(2 n+1) \pi i, n=0, \pm 1, \pm 2, \ldots
$$

we have

$$
\sin ^{-1}(0)=n \pi, n=0, \pm 1, \pm 2, \ldots,
$$

again, as we should expect.
Example 22.3. If $z=2$, then $\left(1-z^{2}\right)^{\frac{1}{2}}= \pm \sqrt{3} i$,
$\log (2 i+\sqrt{3} i)=\log (i(2+\sqrt{3}))=\ln (2+\sqrt{3})+i\left(\frac{\pi}{2}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots$,
and
$\log (2 i-\sqrt{3} i)=\log (i(2-\sqrt{3}))=\ln (2-\sqrt{3})+i\left(\frac{\pi}{2}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots$,
Now $(2-\sqrt{3})(2+\sqrt{3})=4-3=1$, so

$$
2-\sqrt{3}=\frac{1}{2+\sqrt{3}}
$$

Hence

$$
\log (2 i-\sqrt{3} i)=-\ln (2+\sqrt{3})+i\left(\frac{\pi}{2}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots
$$

Hence

$$
\sin ^{-1}(2)=\frac{\pi}{2}+2 n \pi \pm i \ln (2+\sqrt{3}), n=0, \pm 1, \pm 2, \ldots
$$

When specific branches of the square root and the logarithmic functions are chosen, we may differentiate $\sin ^{-1}(z)$:

$$
\begin{aligned}
\frac{d}{d z} \sin ^{-1}(z) & =\frac{d}{d z}\left(-i \log \left(i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right)\right) \\
& =\frac{-i}{i z+\left(1-z^{2}\right)^{\frac{1}{2}}}\left(i+\frac{-2 z}{2\left(1-z^{2}\right)^{\frac{1}{2}}}\right) \\
& =\frac{-i}{i z+\left(1-z^{2}\right)^{\frac{1}{2}}}\left(\frac{i\left(1-z^{2}\right)^{\frac{1}{2}}-z}{\left(1-z^{2}\right)^{\frac{1}{2}}}\right) \\
& =\frac{1}{\left(1-z^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

Note that the result depends on the branch of the square root function chosen, but not on the particular branch of the logarithmic function. Also, note that $\sin ^{-1}(z)$ has singular points at ± 1.

We may define, in an analogous manner, inverse functions for the remaining circular trigonometric functions. The most important of these are

$$
\cos ^{-1}(z)=-i \log \left(z+i\left(1-z^{2}\right)^{\frac{1}{2}}\right)
$$

and

$$
\tan ^{-1}(z)=\frac{i}{2} \log \frac{i+z}{i-z}
$$

with derivatives

$$
\frac{d}{d z} \cos ^{-1}(z)=-\frac{1}{\left(1-z^{2}\right)^{\frac{1}{2}}}
$$

and

$$
\frac{d}{d z} \tan ^{-1}(z)=\frac{1}{1+z^{2}}
$$

22.2 Inverse hyperbolic functions

Given $z \in \mathbb{C}$, we would like to find $w \in \mathbb{C}$ such that $z=\tanh (w)$. That is, we want to solve

$$
z=\frac{e^{w}-e^{-w}}{e^{w}+e^{-w}}
$$

It follows that

$$
z e^{2 w}+z=e^{2 w}-1,
$$

or, equivalently,

$$
e^{2 w}=\frac{1+z}{1-z} .
$$

Hence

$$
w=\frac{1}{2} \log \frac{1+z}{1-z} .
$$

Thus we define the inverse hyperbolic tangent function by

$$
\tanh ^{-1}(z)=\frac{1}{2} \log \frac{1+z}{1-z}
$$

We find the other inverse hyperbolic trigonometric functions in a similar manner. The most important of these are

$$
\sinh ^{-1}(z)=\log \left(z+\left(z^{2}+1\right)^{\frac{1}{2}}\right)
$$

and

$$
\cosh ^{-1}(z)=\log \left(z+\left(z^{2}-1\right)^{\frac{1}{2}}\right) .
$$

The derivatives are

$$
\begin{aligned}
\frac{d}{d z} \sinh ^{-1}(z) & =\frac{1}{\left(z^{2}+1\right)^{\frac{1}{2}}} \\
\frac{d}{d z} \cosh ^{-1}(z) & =\frac{1}{\left(z^{2}-1\right)^{\frac{1}{2}}}
\end{aligned}
$$

and

$$
\frac{d}{d z} \tanh ^{-1}(z)=\frac{1}{1-z^{2}}
$$

