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20.1 Defining sine and cosine

Recall that if x € R, then
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Note what happens if we (somewhat blindly) let = = 0:
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= cos(f) + isin(0).

This is the motivation for our earlier definition of €. It now follows that for
any x € R, we have

e = cos(z) + isin(r) and e = cos(x) — isin(w),
from which we obtain (by addition)
2cos(z) = e* +e™

and (by subtraction) ' A
2isin(x) = e — e'.
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Hence we have

eiz + e—im
cos(z) = —
and . ,
. eiT _ p—ix
sin(x) = —

which motivate the following definitions.
Definition 20.1. For any complex number z, we define the sine function by

¥ —1z

_ e” —e
S —=
in(z) 5
and the cosine function by
eiz efiz
cos(z) = +T

The following proposition is immediate from the properties of analytic
functions and the fact that e* is an entire function.

Proposition 20.1. Both sin(z) and cos(z) are entire functions.

Proposition 20.2. For all z € C,

P sin(z) = cos(z) and P cos(z) = —sin(2).

Proof. We have ' A

7 sin(z) = % = cos(z)

and p o , s

- cos(z) = - _226 == ;ie = —sin(z).

20.2 Properties of sine and cosine

Proposition 20.3. For any z € C,

sin(—z) = —sin(z) and cos(—z) = cos(z).



Proof. We have

sin(—z) = 5; = —sin(z)
and —iz iz
cos(—z) = ‘ ;6 = cos(z).

Proposition 20.4. For any z1, 25 € C,
2sin(z1) cos(zz) = sin(z; + 22) + sin(z; — 23).

Proof. We have

eizl . 6*2'21 eizz + efizz
. _9
2sin(z1) cos(z9) ( 5; > < 5 >

ei(z1+22) 4 ei(zl—zz) - e—i(zl—zg) - e—i(zl—i—zz)

21
ei(21+Z2) _ 6772(214»,22) e’L'(Zl*ZQ) _ e*i(Zl*ZQ)
N 2i * 2i
= sin(z; + 22) + sin(z; — 22).

Proposition 20.5. For any z;,2; € C,
sin(z; + z2) = sin(z1) cos(zg) + cos(z1) sin(z2)

and
cos(z1 + 2z2) = cos(z1) cos(zg) — sin(z) sin(zz).

Proof. From the previous result, we have
2sin(z1) cos(zg) = sin(z; + 29) + sin(z; — 22)

and
2sin(zy) cos(z1) = sin(z; + 22) — sin(z; — 22),

from which we obtain the first identify by addition. It now follows that if
f(2) =sin(z + z),
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then
f(2) = sin(2) cos(z2) 4 cos(z) sin(zs)

as well. Hence
cos(z1 + 22) = f'(21) = cos(z1) cos(zz) — sin(z;) sin(23).
[

The following identities follow immediately from the previous proposi-
tions.

Proposition 20.6. For any z € C,
sin?(z) + cos?(z) = 1,

sin(2z) = 2sin(z) cos(z),

cos(2z) = 2cos?(z) — sin®(z2),

sin <z + g) = cos(z),

sin <z - g) = —cos(z),

cos (z + g) = —sin(z),
cos (z - g) = sin(z),

sin(z + 7) = —sin(z),

cos(z 4+ m) = —cos(z),

sin(z + 2m) = sin(z),

and
cos(z + 2m) = cos(z).

Proposition 20.7. For any z =z + iy € C,
sin(z) = sin(x) cosh(y) + ¢ cos(x) sinh(y)

and
cos(z) = cos(x) cosh(y) — isin(z) sinh(y).



Proof. We first note that

eV +e

5 = cosh(y)

cos(iy) =

and -y Yy Yy -y
sin(iy) = ‘ 2; e _26 = isinh(y).

Hence

sin(z +dy) = sin(z) cos(iy) + sin(iy) cos(x) = sin(x) cosh(y) + i cos(z) sinh(y)

and

cos(z+iy) = cos(z) cos(iy) —sin(z) sin(iy) = cos(x) cosh(y) —i sin(x) sinh(y).
[

It now follows (see the homework)that
|sin(2)|* = sin?(x) + sinh?(y)

and
| cos(2)|* = cos?(x) + sinh?(y).

Since sinh(y) = 0 if and only if y = 0, we see that sin(z) = 0 if and only if
y =0 and x = nr for some n = 0,+1,42, ..., and cos(z) = 0 if and only if
y=0and x = § +nx for some n = 0,£1,£2,.... That is, sin(z) = 0 if and
only if

z=nm,n=0,+1,£2 ...,

and cos(z) = 0 if and only if

z:g+n7r,n:O,j:1,j:2,....

20.3 The other trigonometric functions

The rest of the trigonometric functions are defined as usual:

sin(z)

tan(z) = cos(z)’



cot(z) = sin(z)’

1
seo(z) = cos(z)

and .
cse(z) = o)

Using our results on derivatives, it is straightforward to show that

o tan(z) = sec®(2),

= cot(z) = — csc?(2),

7 sec(z) = sec(z) tan(z),

and J
= cse(z) = — esc(z) cot(z).

In particular, these functions are analytic at all points at which they are
defined. As with their real counterparts, they are all periodic, tan(z) and
cot(z) having period 7 and sec(z) and csc(z) having period 27.



