Lecture 20: Trigonometric Functions

Dan Sloughter
Furman University
Mathematics 39

April 7, 2004

20.1 Defining sine and cosine

Recall that if $x \in \mathbb{R}$, then

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots .
$$

Note what happens if we (somewhat blindly) let $x=i \theta$:

$$
\begin{aligned}
e^{i \theta} & =1+i \theta-\frac{\theta^{2}}{2}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{\theta^{7}}{7!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots\right) \\
& =\cos (\theta)+i \sin (\theta) .
\end{aligned}
$$

This is the motivation for our earlier definition of $e^{i \theta}$. It now follows that for any $x \in \mathbb{R}$, we have

$$
e^{i x}=\cos (x)+i \sin (x) \text { and } e^{-i x}=\cos (x)-i \sin (x)
$$

from which we obtain (by addition)

$$
2 \cos (x)=e^{i x}+e^{-i x}
$$

and (by subtraction)

$$
2 i \sin (x)=e^{i x}-e^{i x}
$$

Hence we have

$$
\cos (x)=\frac{e^{i x}+e^{-i x}}{2}
$$

and

$$
\sin (x)=\frac{e^{i x}-e^{-i x}}{2}
$$

which motivate the following definitions.
Definition 20.1. For any complex number z, we define the sine function by

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

and the cosine function by

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}
$$

The following proposition is immediate from the properties of analytic functions and the fact that e^{z} is an entire function.

Proposition 20.1. Both $\sin (z)$ and $\cos (z)$ are entire functions.
Proposition 20.2. For all $z \in \mathbb{C}$,

$$
\frac{d}{d z} \sin (z)=\cos (z) \text { and } \frac{d}{d z} \cos (z)=-\sin (z)
$$

Proof. We have

$$
\frac{d}{d z} \sin (z)=\frac{i e^{i z}+i e^{-i z}}{2 i}=\cos (z)
$$

and

$$
\frac{d}{d z} \cos (z)=\frac{i e^{i z}-i e^{-i z}}{2}=-\frac{e^{i z}-e^{-i z}}{2 i}=-\sin (z)
$$

20.2 Properties of sine and cosine

Proposition 20.3. For any $z \in \mathbb{C}$,

$$
\sin (-z)=-\sin (z) \text { and } \cos (-z)=\cos (z)
$$

Proof. We have

$$
\sin (-z)=\frac{e^{-i z}-e^{i z}}{2 i}=-\sin (z)
$$

and

$$
\cos (-z)=\frac{e^{-i z}+e^{i z}}{2}=\cos (z)
$$

Proposition 20.4. For any $z_{1}, z_{2} \in \mathbb{C}$,

$$
2 \sin \left(z_{1}\right) \cos \left(z_{2}\right)=\sin \left(z_{1}+z_{2}\right)+\sin \left(z_{1}-z_{2}\right)
$$

Proof. We have

$$
\begin{aligned}
2 \sin \left(z_{1}\right) \cos \left(z_{2}\right) & =2\left(\frac{e^{i z_{1}}-e^{-i z_{1}}}{2 i}\right)\left(\frac{e^{i z_{2}}+e^{-i z_{2}}}{2}\right) \\
& =\frac{e^{i\left(z_{1}+z_{2}\right)}+e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}}{2 i} \\
& =\frac{e^{i\left(z_{1}+z_{2}\right)}-e^{-i\left(z_{1}+z_{2}\right)}}{2 i}+\frac{e^{i\left(z_{1}-z_{2}\right)}-e^{-i\left(z_{1}-z_{2}\right)}}{2 i} \\
& =\sin \left(z_{1}+z_{2}\right)+\sin \left(z_{1}-z_{2}\right) .
\end{aligned}
$$

Proposition 20.5. For any $z_{1}, z_{1} \in \mathbb{C}$,

$$
\sin \left(z_{1}+z_{2}\right)=\sin \left(z_{1}\right) \cos \left(z_{2}\right)+\cos \left(z_{1}\right) \sin \left(z_{2}\right)
$$

and

$$
\cos \left(z_{1}+z_{2}\right)=\cos \left(z_{1}\right) \cos \left(z_{2}\right)-\sin \left(z_{1}\right) \sin \left(z_{2}\right)
$$

Proof. From the previous result, we have

$$
2 \sin \left(z_{1}\right) \cos \left(z_{2}\right)=\sin \left(z_{1}+z_{2}\right)+\sin \left(z_{1}-z_{2}\right)
$$

and

$$
2 \sin \left(z_{2}\right) \cos \left(z_{1}\right)=\sin \left(z_{1}+z_{2}\right)-\sin \left(z_{1}-z_{2}\right)
$$

from which we obtain the first identify by addition. It now follows that if

$$
f(z)=\sin \left(z+z_{2}\right)
$$

then

$$
f(z)=\sin (z) \cos \left(z_{2}\right)+\cos (z) \sin \left(z_{2}\right)
$$

as well. Hence

$$
\cos \left(z_{1}+z_{2}\right)=f^{\prime}\left(z_{1}\right)=\cos \left(z_{1}\right) \cos \left(z_{2}\right)-\sin \left(z_{1}\right) \sin \left(z_{2}\right)
$$

The following identities follow immediately from the previous propositions.

Proposition 20.6. For any $z \in \mathbb{C}$,

$$
\begin{gathered}
\sin ^{2}(z)+\cos ^{2}(z)=1, \\
\sin (2 z)=2 \sin (z) \cos (z), \\
\cos (2 z)=2 \cos ^{2}(z)-\sin ^{2}(z), \\
\sin \left(z+\frac{\pi}{2}\right)=\cos (z), \\
\sin \left(z-\frac{\pi}{2}\right)=-\cos (z), \\
\cos \left(z+\frac{\pi}{2}\right)=-\sin (z), \\
\cos \left(z-\frac{\pi}{2}\right)=\sin (z), \\
\sin (z+\pi)=-\sin (z) \\
\cos (z+\pi)=-\cos (z) \\
\sin (z+2 \pi)=\sin (z)
\end{gathered}
$$

and

$$
\cos (z+2 \pi)=\cos (z)
$$

Proposition 20.7. For any $z=x+i y \in \mathbb{C}$,

$$
\sin (z)=\sin (x) \cosh (y)+i \cos (x) \sinh (y)
$$

and

$$
\cos (z)=\cos (x) \cosh (y)-i \sin (x) \sinh (y)
$$

Proof. We first note that

$$
\cos (i y)=\frac{e^{-y}+e^{y}}{2}=\cosh (y)
$$

and

$$
\sin (i y)=\frac{e^{-y}-e^{y}}{2 i}=i \frac{e^{y}-e^{-y}}{2}=i \sinh (y)
$$

Hence
$\sin (x+i y)=\sin (x) \cos (i y)+\sin (i y) \cos (x)=\sin (x) \cosh (y)+i \cos (x) \sinh (y)$
and
$\cos (x+i y)=\cos (x) \cos (i y)-\sin (x) \sin (i y)=\cos (x) \cosh (y)-i \sin (x) \sinh (y)$.

It now follows (see the homework)that

$$
|\sin (z)|^{2}=\sin ^{2}(x)+\sinh ^{2}(y)
$$

and

$$
|\cos (z)|^{2}=\cos ^{2}(x)+\sinh ^{2}(y)
$$

Since $\sinh (y)=0$ if and only if $y=0$, we see that $\sin (z)=0$ if and only if $y=0$ and $x=n \pi$ for some $n=0, \pm 1, \pm 2, \ldots$, and $\cos (z)=0$ if and only if $y=0$ and $x=\frac{\pi}{2}+n \pi$ for some $n=0, \pm 1, \pm 2, \ldots$. That is, $\sin (z)=0$ if and only if

$$
z=n \pi, n=0, \pm 1, \pm 2, \ldots
$$

and $\cos (z)=0$ if and only if

$$
z=\frac{\pi}{2}+n \pi, n=0, \pm 1, \pm 2, \ldots
$$

20.3 The other trigonometric functions

The rest of the trigonometric functions are defined as usual:

$$
\tan (z)=\frac{\sin (z)}{\cos (z)}
$$

$$
\begin{aligned}
& \cot (z)=\frac{\cos (z)}{\sin (z)} \\
& \sec (z)=\frac{1}{\cos (z)}
\end{aligned}
$$

and

$$
\csc (z)=\frac{1}{\sin (z)}
$$

Using our results on derivatives, it is straightforward to show that

$$
\begin{gathered}
\frac{d}{d z} \tan (z)=\sec ^{2}(z), \\
\frac{d}{d z} \cot (z)=-\csc ^{2}(z), \\
\frac{d}{d z} \sec (z)=\sec (z) \tan (z),
\end{gathered}
$$

and

$$
\frac{d}{d z} \csc (z)=-\csc (z) \cot (z)
$$

In particular, these functions are analytic at all points at which they are defined. As with their real counterparts, they are all periodic, $\tan (z)$ and $\cot (z)$ having period π and $\sec (z)$ and $\csc (z)$ having period 2π.

