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2.1 Some algebraic properties

It is easy to show that the addition of complex numbers is commutative and
associative; that is, for any complex numbers z1, z2, and z3,

z1 + z2 = z2 + z1

and
(z1 + z2) + z3 = z1 + (z2 + z3).

For multiplication, note that if z1 = (x1, y1) and z2 = (x2, y2), then

z1z2 = (x1x2 − y1y2, y1x2 + x1y2) = (x2x1 − y2y1, y2x1 + x2y1) = z2z1.

Hence multiplication is commutative. One may show as well that multipli-
cation is associative, that is,

(z1z2)z3 = z1(z2z3),

and that multiplication distributes over addition:

z1(z2 + z3) = z1z2 + z1z3.

Addition and multiplication have unique identities, namely, 0 = (0, 0)
and 1 = (1, 0); that is, for every complex number z,

0 + z = z and 1 · z = z.
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Moreover, each z = (x, y)) has a unique additive inverse: if −z = (−x,−y)
then

z + (−z) = 0.

Note that this enables us to define subtraction:

z1 − z2 = z1 + (−z2).

That is, if z1 = (x1, y1) and z2 = (x2, y2), then

z1 + z2 = (x1 − x2, y1 − y2) = (x1 − x2) + i(y1 − y2).

To find a multiplicative inverse, note that, given z = (x, y), z 6= 0, we
need to find w = (u, v) such that zw = (1, 0), that is, such that

xu − yv = 1 and yu + xv = 0.

Multiplying the first equation by x, the second by y, and adding, we have

x2u + y2u = x.

Since x2 + y2 6= 0, we have

u =
x

x2 + y2
.

Multiplying the first equation by y, the second by x, and subtracting, we
have

−y2v − x2v = y,

from which it follows that
v = − y

x2 + y2
.

Hence the unique multiplicative inverse of z = x + iy is

z−1 =
x

x2 + y2
− i

y

x2 + y2
.

Example 2.1. If z = 1 + 2i, then

z−1 =
1

5
− 2

5
i,

which we may check by noting that

(1 + 2i)

(
1

5
− 2

5
i

)
=

1

5
+

4

5
+

(
−2

5
+

2

5

)
i = 1.
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Now that we know that multiplicative inverses exist, we may proceed as
follows:

z−1 =
1

1 + 2i
=

1

1 + 2i

1 − 2i

1 − 2i
=

1 − 2i

1 + 4
=

1

5
− 2

5
i.

Now suppose z1 6= 0 and z1z2 = 0. Then

z2 = (z−1
1 z1)z2 = z−1

1 (z1z2) = z−1
1 · 0 = 0.

That is, if z1z2 = 0, then either z1 = 0 or z2 = 0.
We may now define division: if z2 6= 0, we define

z1

z2

= z1z
−1
2 .

Although one may write out a formula for division, in practice it is usually
preferable to follow the next example.

Example 2.2. We have

3 + 4i

1 − 2i
=

3 + 4i

1 − 2i

1 + 2i

1 + 2i
=

(3 − 8) + (6 + 4)i

1 + 4
= −5

5
+

10

5
i = −1 + 2i.

In the language of algebra, we have shown that C is a field, and we may
work with complex numbers algebraically the same way we work with real
numbers.
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