Lecture 2: Algebra of Complex Numbers

Dan Sloughter
Furman University
Mathematics 39

March 9, 2004

2.1 Some algebraic properties

It is easy to show that the addition of complex numbers is commutative and associative; that is, for any complex numbers z_{1}, z_{2}, and z_{3},

$$
z_{1}+z_{2}=z_{2}+z_{1}
$$

and

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)
$$

For multiplication, note that if $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$, then

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}, y_{1} x_{2}+x_{1} y_{2}\right)=\left(x_{2} x_{1}-y_{2} y_{1}, y_{2} x_{1}+x_{2} y_{1}\right)=z_{2} z_{1}
$$

Hence multiplication is commutative. One may show as well that multiplication is associative, that is,

$$
\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)
$$

and that multiplication distributes over addition:

$$
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} .
$$

Addition and multiplication have unique identities, namely, $0=(0,0)$ and $1=(1,0)$; that is, for every complex number z,

$$
0+z=z \text { and } 1 \cdot z=z
$$

Moreover, each $z=(x, y))$ has a unique additive inverse: if $-z=(-x,-y)$ then

$$
z+(-z)=0
$$

Note that this enables us to define subtraction:

$$
z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)
$$

That is, if $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$, then

$$
z_{1}+z_{2}=\left(x_{1}-x_{2}, y_{1}-y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)
$$

To find a multiplicative inverse, note that, given $z=(x, y), z \neq 0$, we need to find $w=(u, v)$ such that $z w=(1,0)$, that is, such that

$$
x u-y v=1 \text { and } y u+x v=0 .
$$

Multiplying the first equation by x, the second by y, and adding, we have

$$
x^{2} u+y^{2} u=x
$$

Since $x^{2}+y^{2} \neq 0$, we have

$$
u=\frac{x}{x^{2}+y^{2}} .
$$

Multiplying the first equation by y, the second by x, and subtracting, we have

$$
-y^{2} v-x^{2} v=y
$$

from which it follows that

$$
v=-\frac{y}{x^{2}+y^{2}}
$$

Hence the unique multiplicative inverse of $z=x+i y$ is

$$
z^{-1}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} .
$$

Example 2.1. If $z=1+2 i$, then

$$
z^{-1}=\frac{1}{5}-\frac{2}{5} i
$$

which we may check by noting that

$$
(1+2 i)\left(\frac{1}{5}-\frac{2}{5} i\right)=\frac{1}{5}+\frac{4}{5}+\left(-\frac{2}{5}+\frac{2}{5}\right) i=1 .
$$

Now that we know that multiplicative inverses exist, we may proceed as follows:

$$
z^{-1}=\frac{1}{1+2 i}=\frac{1}{1+2 i} \frac{1-2 i}{1-2 i}=\frac{1-2 i}{1+4}=\frac{1}{5}-\frac{2}{5} i .
$$

Now suppose $z_{1} \neq 0$ and $z_{1} z_{2}=0$. Then

$$
z_{2}=\left(z_{1}^{-1} z_{1}\right) z_{2}=z_{1}^{-1}\left(z_{1} z_{2}\right)=z_{1}^{-1} \cdot 0=0
$$

That is, if $z_{1} z_{2}=0$, then either $z_{1}=0$ or $z_{2}=0$.
We may now define division: if $z_{2} \neq 0$, we define

$$
\frac{z_{1}}{z_{2}}=z_{1} z_{2}^{-1}
$$

Although one may write out a formula for division, in practice it is usually preferable to follow the next example.

Example 2.2. We have

$$
\frac{3+4 i}{1-2 i}=\frac{3+4 i}{1-2 i} \frac{1+2 i}{1+2 i}=\frac{(3-8)+(6+4) i}{1+4}=-\frac{5}{5}+\frac{10}{5} i=-1+2 i
$$

In the language of algebra, we have shown that \mathbb{C} is a field, and we may work with complex numbers algebraically the same way we work with real numbers.

