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18.1 Branches

Note that
Log (z) = ln |z|+ iArg z

is not continuous for any z0 = x0+iy0 with y0 = 0 and x0 ≤ 0 since Log (z) →
ln |x0|+ iπ as z = x+ iy approaches z0 with y > 0 and Log (z) → ln |x0| − iπ
as z = x + iy approaches z0 with y < 0. However, if we restrict to z = reiθ

with −π < θ < π and write Log (z) = u(r, θ) + iv(r, θ), then

u(r, θ) = ln(r) and v(r, θ) = θ,

and so

ur(r, θ) =
1

r
and uθ(r, θ) = 0

and
vr(r, θ) = 0 and vθ(r, θ) = 1.

Hence
rur(r, θ) = vθ(r, θ) and uθ(r, θ) = −rvr(r, θ).

That is, u and v satisfy the Cauchy-Riemann equations, and so Log (z) is
analytic in

U = {z = reiθ ∈ C : r > 0,−π < θ < π}.
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Moroever, for all z ∈ U ,

d

dz
Log z = e−iθ(ur(r, θ) + ivr(r, θ) = e−iθ

(
1

r
+ i · 0

)
=

1

reiθ
=

1

z
.

More generally, if for any real number α we restrict log(z) to

log z = ln r + iθ,

where z = reiθ, r > 0, and α < θ < α + 2π, then log z is analytic in

U = {z = reiθ ∈ C : r > 0, α < θ < α + 2π}

with
d

dz
log z =

1

z
.

We call such a restricted version of log z a branch of the multi-valued function
log z, with the restricted version of Log z discussed above being the principal
branch. We call the origin along with the ray consisting of all points z = reiθ

for which θ = α a branch cut ; we call the origin a branch point because it is
common to all the branch cuts.

18.2 Properties of logarithms

Proposition 18.1. For any z1, z2 ∈ C, with z1 6= 0 and z2 6= 0, then

log(z1z2) = log(z1) + log(z2)

and

log

(
z1

z2

)
= log(z1)− log(z2).

Proof. We have

log(z1z2) = ln(|z1z2|) + i arg(z1z2)

= ln(|z1||z2|) + i(arg(z1) + arg(z2))

= (ln(|z1) + i arg(z1)) + (ln(|z2|+ i arg(z2))

= log(z1) + log(z2).

and

log

(
z1

z2

)
= ln

∣∣∣∣z1

z2

∣∣∣∣ + i arg

(
z1

z2

)
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= ln

(
|z1|
|z2|

)
+ i(arg(z1)− arg(z2))

= (ln(|z1) + i arg(z1))− (ln(|z2|+ i arg(z2))

= log(z1)− log(z2).

Example 18.1. Let z1 = −2i and z2 = −i. Then

log(z1) = ln(2) + i
(
−π

2
+ 2nπ

)
, n = 0,±1,±2, . . . ,

log(z2) = i
(
−π

2
+ 2nπ

)
, n = 0,±1,±2, . . . ,

and
log(z1z2) = log(−2) = ln(2) + i(π + 2nπ), n = 0,±1,±2, . . .

Clearly,
log(z1z2) = log(z1) + log(z2).

However,

Log (z1) = ln(2)− i
π

2
,

Log (z2) = −i
π

2
,

Log (z1z2) = Log (−2) = ln(2) + iπ,

and so
Log (z1) + Log (z2) = ln(2)− iπ 6= Log (z1z2).

As a prelude to discussing complex exponents, we note two more prop-
erties of logarithms. First, if z = reiθ, r > 0, then, since z = elog(z), we
have

zn = en log(z), n = 0,±1,±2, . . . .

Next, if n is a positive integer, Θ = Arg (z), z = reiΘ 6= 0, then, for k =
0,±1,±2, . . .,

e
1
n

log(z) = e(
1
n

ln(r)+iΘ+2kπ
n ) = n

√
rei(Θ

n
+ 2kπ

n ) = z
1
n .

This works as well when n is a negative integer by noting that

z
1
n =

(
z

1
−n

)−1

=
(
e−

1
n

log(z)
)−1

= e
1
n

log(z).
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