Lecture 18: Properties of Logarithms

Dan Sloughter Furman University Mathematics 39

April 5, 2004

18.1 Branches

Note that

$$\operatorname{Log}(z) = \ln |z| + i\operatorname{Arg} z$$

is not continuous for any $z_0 = x_0 + iy_0$ with $y_0 = 0$ and $x_0 \le 0$ since $\text{Log}(z) \rightarrow \ln |x_0| + i\pi$ as z = x + iy approaches z_0 with y > 0 and $\text{Log}(z) \rightarrow \ln |x_0| - i\pi$ as z = x + iy approaches z_0 with y < 0. However, if we restrict to $z = re^{i\theta}$ with $-\pi < \theta < \pi$ and write $\text{Log}(z) = u(r, \theta) + iv(r, \theta)$, then

$$u(r, \theta) = \ln(r)$$
 and $v(r, \theta) = \theta$,

and so

$$u_r(r,\theta) = \frac{1}{r}$$
 and $u_{\theta}(r,\theta) = 0$

and

$$v_r(r,\theta) = 0$$
 and $v_{\theta}(r,\theta) = 1$.

Hence

$$ru_r(r,\theta) = v_\theta(r,\theta)$$
 and $u_\theta(r,\theta) = -rv_r(r,\theta)$

That is, u and v satisfy the Cauchy-Riemann equations, and so Log(z) is analytic in

$$U = \{ z = re^{i\theta} \in \mathbb{C} : r > 0, -\pi < \theta < \pi \}.$$

Moreover, for all $z \in U$,

$$\frac{d}{dz}\operatorname{Log} z = e^{-i\theta}(u_r(r,\theta) + iv_r(r,\theta)) = e^{-i\theta}\left(\frac{1}{r} + i \cdot 0\right) = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

More generally, if for any real number α we restrict $\log(z)$ to

$$\log z = \ln r + i\theta,$$

where $z = re^{i\theta}$, r > 0, and $\alpha < \theta < \alpha + 2\pi$, then $\log z$ is analytic in

$$U = \{ z = re^{i\theta} \in \mathbb{C} : r > 0, \alpha < \theta < \alpha + 2\pi \}$$

with

$$\frac{d}{dz}\log z = \frac{1}{z}.$$

We call such a restricted version of $\log z$ a *branch* of the multi-valued function $\log z$, with the restricted version of $\log z$ discussed above being the *principal branch*. We call the origin along with the ray consisting of all points $z = re^{i\theta}$ for which $\theta = \alpha$ a *branch cut*; we call the origin a *branch point* because it is common to all the branch cuts.

18.2 Properties of logarithms

Proposition 18.1. For any $z_1, z_2 \in \mathbb{C}$, with $z_1 \neq 0$ and $z_2 \neq 0$, then

$$\log(z_1 z_2) = \log(z_1) + \log(z_2)$$

and

$$\log\left(\frac{z_1}{z_2}\right) = \log(z_1) - \log(z_2).$$

Proof. We have

$$log(z_1 z_2) = ln(|z_1 z_2|) + i \arg(z_1 z_2) = ln(|z_1||z_2|) + i(\arg(z_1) + \arg(z_2)) = (ln(|z_1) + i \arg(z_1)) + (ln(|z_2| + i \arg(z_2))) = log(z_1) + log(z_2).$$

and

$$\log\left(\frac{z_1}{z_2}\right) = \ln\left|\frac{z_1}{z_2}\right| + i\arg\left(\frac{z_1}{z_2}\right)$$

$$= \ln\left(\frac{|z_1|}{|z_2|}\right) + i(\arg(z_1) - \arg(z_2))$$

= $(\ln(|z_1) + i\arg(z_1)) - (\ln(|z_2| + i\arg(z_2)))$
= $\log(z_1) - \log(z_2).$

_	_	_	

Example 18.1. Let $z_1 = -2i$ and $z_2 = -i$. Then

$$\log(z_1) = \ln(2) + i\left(-\frac{\pi}{2} + 2n\pi\right), n = 0, \pm 1, \pm 2, \dots,$$
$$\log(z_2) = i\left(-\frac{\pi}{2} + 2n\pi\right), n = 0, \pm 1, \pm 2, \dots,$$

and

$$\log(z_1 z_2) = \log(-2) = \ln(2) + i(\pi + 2n\pi), n = 0, \pm 1, \pm 2, \dots$$

Clearly,

$$\log(z_1 z_2) = \log(z_1) + \log(z_2)$$

However,

$$Log(z_1) = ln(2) - i\frac{\pi}{2},$$
 $Log(z_2) = -i\frac{\pi}{2},$
 $Log(z_1z_2) = Log(-2) = ln(2) + i\pi,$

and so

$$\log(z_1) + \log(z_2) = \ln(2) - i\pi \neq \log(z_1 z_2).$$

As a prelude to discussing complex exponents, we note two more properties of logarithms. First, if $z = re^{i\theta}$, r > 0, then, since $z = e^{\log(z)}$, we have

$$z^n = e^{n \log(z)}, n = 0, \pm 1, \pm 2, \dots$$

Next, if n is a positive integer, $\Theta = \operatorname{Arg}(z), z = re^{i\Theta} \neq 0$, then, for $k = 0, \pm 1, \pm 2, \ldots$,

$$e^{\frac{1}{n}\log(z)} = e^{\left(\frac{1}{n}\ln(r) + i\frac{\Theta + 2k\pi}{n}\right)} = \sqrt[n]{r}e^{i\left(\frac{\Theta}{n} + \frac{2k\pi}{n}\right)} = z^{\frac{1}{n}}.$$

This works as well when n is a negative integer by noting that

$$z^{\frac{1}{n}} = \left(z^{\frac{1}{-n}}\right)^{-1} = \left(e^{-\frac{1}{n}\log(z)}\right)^{-1} = e^{\frac{1}{n}\log(z)}.$$