Lecture 18:
 Properties of Logarithms

Dan Sloughter
Furman University
Mathematics 39

April 5, 2004

18.1 Branches

Note that

$$
\log (z)=\ln |z|+i \operatorname{Arg} z
$$

is not continuous for any $z_{0}=x_{0}+i y_{0}$ with $y_{0}=0$ and $x_{0} \leq 0$ since $\log (z) \rightarrow$ $\ln \left|x_{0}\right|+i \pi$ as $z=x+i y$ approaches z_{0} with $y>0$ and $\log (z) \rightarrow \ln \left|x_{0}\right|-i \pi$ as $z=x+i y$ approaches z_{0} with $y<0$. However, if we restrict to $z=r e^{i \theta}$ with $-\pi<\theta<\pi$ and write $\log (z)=u(r, \theta)+i v(r, \theta)$, then

$$
u(r, \theta)=\ln (r) \text { and } v(r, \theta)=\theta
$$

and so

$$
u_{r}(r, \theta)=\frac{1}{r} \text { and } u_{\theta}(r, \theta)=0
$$

and

$$
v_{r}(r, \theta)=0 \text { and } v_{\theta}(r, \theta)=1 .
$$

Hence

$$
r u_{r}(r, \theta)=v_{\theta}(r, \theta) \text { and } u_{\theta}(r, \theta)=-r v_{r}(r, \theta) .
$$

That is, u and v satisfy the Cauchy-Riemann equations, and so $\log (z)$ is analytic in

$$
U=\left\{z=r e^{i \theta} \in \mathbb{C}: r>0,-\pi<\theta<\pi\right\} .
$$

Moroever, for all $z \in U$,

$$
\frac{d}{d z} \log z=e^{-i \theta}\left(u_{r}(r, \theta)+i v_{r}(r, \theta)=e^{-i \theta}\left(\frac{1}{r}+i \cdot 0\right)=\frac{1}{r e^{i \theta}}=\frac{1}{z}\right.
$$

More generally, if for any real number α we restrict $\log (z)$ to

$$
\log z=\ln r+i \theta
$$

where $z=r e^{i \theta}, r>0$, and $\alpha<\theta<\alpha+2 \pi$, then $\log z$ is analytic in

$$
U=\left\{z=r e^{i \theta} \in \mathbb{C}: r>0, \alpha<\theta<\alpha+2 \pi\right\}
$$

with

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

We call such a restricted version of $\log z$ a branch of the multi-valued function $\log z$, with the restricted version of $\log z$ discussed above being the principal branch. We call the origin along with the ray consisting of all points $z=r e^{i \theta}$ for which $\theta=\alpha$ a branch cut; we call the origin a branch point because it is common to all the branch cuts.

18.2 Properties of logarithms

Proposition 18.1. For any $z_{1}, z_{2} \in \mathbb{C}$, with $z_{1} \neq 0$ and $z_{2} \neq 0$, then

$$
\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)
$$

and

$$
\log \left(\frac{z_{1}}{z_{2}}\right)=\log \left(z_{1}\right)-\log \left(z_{2}\right)
$$

Proof. We have

$$
\begin{aligned}
\log \left(z_{1} z_{2}\right) & =\ln \left(\left|z_{1} z_{2}\right|\right)+i \arg \left(z_{1} z_{2}\right) \\
& =\ln \left(\left|z_{1}\right|\left|z_{2}\right|\right)+i\left(\arg \left(z_{1}\right)+\arg \left(z_{2}\right)\right) \\
& =\left(\ln \left(\mid z_{1}\right)+i \arg \left(z_{1}\right)\right)+\left(\ln \left(\left|z_{2}\right|+i \arg \left(z_{2}\right)\right)\right. \\
& =\log \left(z_{1}\right)+\log \left(z_{2}\right)
\end{aligned}
$$

and

$$
\log \left(\frac{z_{1}}{z_{2}}\right)=\ln \left|\frac{z_{1}}{z_{2}}\right|+i \arg \left(\frac{z_{1}}{z_{2}}\right)
$$

$$
\begin{aligned}
& =\ln \left(\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right)+i\left(\arg \left(z_{1}\right)-\arg \left(z_{2}\right)\right) \\
& =\left(\ln \left(\mid z_{1}\right)+i \arg \left(z_{1}\right)\right)-\left(\ln \left(\left|z_{2}\right|+i \arg \left(z_{2}\right)\right)\right. \\
& =\log \left(z_{1}\right)-\log \left(z_{2}\right) .
\end{aligned}
$$

Example 18.1. Let $z_{1}=-2 i$ and $z_{2}=-i$. Then

$$
\begin{gathered}
\log \left(z_{1}\right)=\ln (2)+i\left(-\frac{\pi}{2}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots, \\
\log \left(z_{2}\right)=i\left(-\frac{\pi}{2}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

and

$$
\log \left(z_{1} z_{2}\right)=\log (-2)=\ln (2)+i(\pi+2 n \pi), n=0, \pm 1, \pm 2, \ldots
$$

Clearly,

$$
\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)
$$

However,

$$
\begin{gathered}
\log \left(z_{1}\right)=\ln (2)-i \frac{\pi}{2} \\
\log \left(z_{2}\right)=-i \frac{\pi}{2} \\
\log \left(z_{1} z_{2}\right)=\log (-2)=\ln (2)+i \pi
\end{gathered}
$$

and so

$$
\log \left(z_{1}\right)+\log \left(z_{2}\right)=\ln (2)-i \pi \neq \log \left(z_{1} z_{2}\right)
$$

As a prelude to discussing complex exponents, we note two more properties of logarithms. First, if $z=r e^{i \theta}, r>0$, then, since $z=e^{\log (z)}$, we have

$$
z^{n}=e^{n \log (z)}, n=0, \pm 1, \pm 2, \ldots
$$

Next, if n is a positive integer, $\Theta=\operatorname{Arg}(z), z=r e^{i \Theta} \neq 0$, then, for $k=$ $0, \pm 1, \pm 2, \ldots$,

$$
e^{\frac{1}{n} \log (z)}=e^{\left(\frac{1}{n} \ln (r)+i \frac{\Theta+2 k \pi}{n}\right)}=\sqrt[n]{r} e^{i\left(\frac{\Theta}{n}+\frac{2 k \pi}{n}\right)}=z^{\frac{1}{n}}
$$

This works as well when n is a negative integer by noting that

$$
z^{\frac{1}{n}}=\left(z^{\frac{1}{-n}}\right)^{-1}=\left(e^{-\frac{1}{n} \log (z)}\right)^{-1}=e^{\frac{1}{n} \log (z)} .
$$

