Lecture 17: Exponentials and Logs

Dan Sloughter
Furman University
Mathematics 39

April 2, 2004

17.1 The exponential function

Recall that for any $z=x+i y \in \mathbb{C}$, we have defined

$$
\exp (z)=e^{z}=e^{x} e^{i y}
$$

Note that, in an exception to our earlier convention, we will interpret

$$
e^{\frac{1}{n}}=\sqrt[n]{e}
$$

not as the set of nth roots of e.
Proposition 17.1. For any $z \in \mathbb{C}, e^{z} \neq 0$.
Proof. Note that, if $z=x+i y$,

$$
\left|e^{z}\right|=\left|e^{x}\right|\left|e^{i y}\right|=e^{x} \neq 0
$$

for all $x \in \mathbb{R}$.
Recall, however, that e^{z} may assume negative values. For example,

$$
e^{i \pi}=-1
$$

Proposition 17.2. For any $z_{1}, z_{2} \in \mathbb{C}, e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$ and

$$
e^{z_{1}-z_{2}}=\frac{e^{z_{1}}}{e^{z_{2}}}
$$

Proof. Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$. Then

$$
\begin{aligned}
e^{z_{1}+z_{2}} & =e^{\left(x_{1}+x_{2}\right)+i\left(y_{2}+y_{2}\right)} \\
& =e^{x_{1}+x_{2}} e^{i\left(y_{1}+y_{2}\right)} \\
& =e^{x_{1}} e^{x_{2}} e^{i y_{1}} e^{i y_{2}} \\
& =e^{x_{1}+i y_{1}} e^{x_{2}+i y_{2}} \\
& =e^{z_{1}} e^{z_{2}} .
\end{aligned}
$$

It now follows that

$$
e^{z_{1}-z_{2}} e^{z_{2}}=e^{z_{1}-z_{2}+z_{2}}=e^{z_{1}}
$$

and so

$$
e^{z_{1}-z_{2}}=\frac{e^{z_{1}}}{e^{z_{2}}}
$$

Proposition 17.3. e^{z} is periodic with period $2 \pi i$.
Proof. For any $z \in \mathbb{C}$,

$$
e^{z+2 \pi i}=e^{z} e^{2 \pi i}=e^{z} .
$$

Example 17.1. The solutions of the equation $e^{z}=-1$ are

$$
z=\pi i+2 n \pi i=(2 n+1) \pi i, n=0, \pm 1, \pm 2, \ldots
$$

Is this $\log (-1)$?

17.2 The logarithmic function

Given any $z \in \mathbb{C}, z \neq 0$, we want to find w such that

$$
e^{w}=z .
$$

Now if $z=r e^{i \Theta}$, with $r>0$ and $-\pi<\Theta \leq \pi$, and $w=u+i v$, then we want

$$
e^{u} e^{i v}=r e^{i \Theta}
$$

from which it follows that

$$
e^{u}=r \text { and } v=\Theta+2 n \pi, n=0, \pm 1, \pm 2, \ldots
$$

It follows that $u=\ln (r)$, and so

$$
w=\ln (r)+i(\Theta+2 n \pi), n=0, \pm 1, \pm 2, \ldots
$$

Definition 17.1. Given $z \in \mathbb{C}, z \neq 0$, we call

$$
\log (z)=\ln (|z|)+i(\operatorname{Arg}(z)+2 n \pi), n=0, \pm 1, \pm 2, \ldots
$$

the (multi-valued) logarithmic function of z. We call

$$
\log (z)=\ln (|z|)+i \operatorname{Arg}(z)
$$

the principal value of $\log (z)$.
Example 17.2. If $z=1-i$, then

$$
\log (z)=\ln (\sqrt{2})-\frac{\pi}{4} i=\frac{1}{2} \ln (2)-\frac{\pi}{4} i
$$

and

$$
\log (z)=\frac{1}{2} \ln (2)+i\left(-\frac{\pi}{4}+2 n \pi\right), n=0, \pm 1, \pm 2, \ldots
$$

Note that $e^{\log (z)}=z$, but, if $z=x+i y$, $\log \left(e^{z}\right)=\ln \left(\left|e^{z}\right|\right)+i \arg \left(e^{z}\right)=\ln \left(e^{x}\right)+i(y+2 n \pi)=z+2 n \pi i, n=0, \pm 1, \pm 2, \ldots$.

Example 17.3. If $z=4 \pi i$, then

$$
\log \left(e^{z}\right)=i(4 \pi+2 n \pi), n=0, \pm 1, \pm 2, \ldots,
$$

and

$$
\log \left(e^{z}\right)=\log (1)=0
$$

