Lecture 16:
 Harmonic Functions

Dan Sloughter
Furman University
Mathematics 39

March 31, 2004

16.1 Harmonic functions

Suppose f is analytic in a domain D,

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

and u and v have continuous partial derivatives of all orders. From the Cauchy-Riemann equations we know that

$$
u_{x}(x, y)=v_{y}(x, y) \text { and } u_{y}(x, y)=-v_{x}(x, y)
$$

for all $x+i y \in D$. Differentiating with respect to x, we have

$$
u_{x x}(x, y)=v_{y x}(x, y) \text { and } u_{y x}(x, y)=-v_{x x}(x, y)
$$

differentiating with respect to y, we have

$$
u_{x y}(x, y)=v_{y y}(x, y) \text { and } u_{y y}(x, y)=-v_{x y}(x, y)
$$

Hence

$$
u_{x x}(x, y)+u_{y y}(x, y)=v_{y x}(x, y)-v_{x y}(x, y)=v_{x y}(x, y)-v_{x y}(x, y)=0
$$

for all $x+i y \in D$ and

$$
v_{x x}(x, y)+v_{y y}(x, y)=-u_{y x}(x, y)+u_{x y}(x, y)=-u_{x y}(x, y)+u_{x y}(x, y)=0
$$

for all $x+i y \in D$.

Definition 16.1. Suppose $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous second partial derivatives on a domain D. We say H is harmonic in D if for all $(x, y) \in D$,

$$
H_{x x}(x, y)+H_{y y}(x, y)=0
$$

Harmonic functions arise frequently in applications, such as in the study of heat distributions and electrostatic potentials.

Theorem 16.1. If f is analytic in a domain D and

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

then u and v are harmonic in D.
Proof. The result follows from the discussion above combined with a result we will prove later: if f is analytic at $z_{0}=x_{0}+i y_{0}$, then u and v have continuous partial derivatives of all orders at $\left(x_{0}, y_{0}\right)$.

Example 16.1. We know that $f(z)=e^{z}$ is entire. Since

$$
f(x+i y)=e^{x} \cos (y)+i e^{x} \sin (y)
$$

it follows that $u(x, y)=e^{x} \cos (y)$ and $v(x, y)=e^{x} \sin (y)$ are both harmonic in \mathbb{C} (which is also easily checked directly).

Example 16.2. We know that

$$
f(z)=\frac{1}{z^{2}}
$$

is analytic in $\{z \in \mathbb{C}: z \neq 0\}$. Now

$$
\frac{1}{z^{2}}=\frac{1}{z^{2}} \frac{\bar{z}^{2}}{\bar{z}^{2}}=\frac{x^{2}-y^{2}-2 x y i}{\left(x^{2}+y^{2}\right)^{2}}
$$

so

$$
u(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and

$$
v(x, y)=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

are harmonic in $\left\{(x, y) \in \mathbb{R}^{2}:(x, y) \neq(0,0)\right\}$.

Definition 16.2. If u and v are harmonic in a domain D and satisfy the Cauchy-Riemann equations, then we say v is a harmonic conjugate of u.

Example 16.3. It is easy to check that the function

$$
u(x, y)=x^{3}-3 x y^{2}
$$

is harmonic. To find a harmonic conjugate v of u, we must have

$$
u_{x}(x, y)=v_{y}(x, y)
$$

and

$$
u_{y}(x, y)=-v_{x}(x, y) .
$$

From the first we have

$$
v_{y}(x, y)=3 x^{2}-3 y^{2}
$$

from which it follows that

$$
v(x, y)=3 x^{2} y-y^{3}+\varphi(x)
$$

for some function φ of x. It now follows from the second equation that

$$
-6 x y=-v_{x}(x, y)=-\left(6 x y+\varphi^{\prime}(x)\right),
$$

and so $\varphi^{\prime}(x)=0$. Hence for any real number c, the function

$$
v(x, y)=3 x^{2} y-y^{3}+c
$$

is a harmonic conjugate of u.

