Lecture 14: Cauchy-Riemann Equations: Polar Form

Dan Sloughter Furman University Mathematics 39

March 31, 2004

14.1 Polar form of the Cauchy-Riemann Equations

Theorem 14.1. Suppose f is defined on an ϵ neighborhood U of a point $z_0 = r_0 e^{i\theta_0}$,

$$f(re^{i\theta}) = u(r,\theta) + iv(r,\theta),$$

and u_r , u_{θ} , v_r , and v_{θ} exist on U and are continuous at (r_0, θ_0) . If f is differentiable at z_0 , then

$$r_0 u_r(r_0, \theta_0) = v_\theta(r_0, \theta_0)$$
 and $u_\theta(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0)$

and

$$f'(z_0) = e^{-i\theta_0}(u_r(r_0, \theta_0) + iv_r(r_0, \theta_0)).$$

Proof. By the chain rule from multi-variable calculus,

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}$$

and

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}.$$

Since $x = r \cos(\theta)$ and $y = r \sin(\theta)$, we have

$$u_r = u_x \cos(\theta) + u_y \sin(\theta)$$

and

$$u_{\theta} = -u_x r \sin(\theta) + u_y r \cos(\theta).$$

Similarly,

$$v_r = v_x \cos(\theta) + v_y \sin(\theta)$$

and

$$v_{\theta} = -v_x r \sin(\theta) + v_y r \cos(\theta).$$

Now f is differentiable at z_0 , and so satisfies the Cauchy-Riemann equations at z_0 . That is,

$$u_x(r_0, \theta_0) = v_y(r_0, \theta_0)$$
 and $u_y(r_0, \theta_0) = -v_x(r_0, \theta_0)$.

Hence

$$v_r(r_0, \theta_0) = -u_y(r_0, \theta_0)\cos(\theta) + u_x(r_0, \theta_0)\sin(\theta)$$

and

$$v_{\theta}(r_0, \theta_0) = u_y(r_0, \theta_0) r \sin(\theta) + u_x(r_0, \theta_0) r \cos(\theta).$$

It follows that

$$r_0 u_r(r_0, \theta_0) = v_\theta(r_0, \theta_0)$$
 and $u_\theta(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0)$

The final statement of the theorem is left as an exercise.

Theorem 14.2. Suppose f is defined on an ϵ neighborhood U of a point $z_0 = r_0 e^{i\theta_0}$,

$$f(re^{i\theta}) = u(r,\theta) + iv(r,\theta),$$

and u_r , u_{θ} , v_r , and v_{θ} exist on U and are continuous at (r_0, θ_0) . If

$$r_0 u_r(r_0, \theta_0) = v_\theta(r_0, \theta_0)$$
 and $u_\theta(r_0, \theta_0) = -r_0 v_r(r_0, \theta_0)$,

then f is differentiable at z_0 .

Proof. The proof is left as a homework exercise.

Example 14.1. For $z \neq 0$, let

$$f(z) = \frac{1}{z^2}.$$

If we write $z = re^{i\theta}$, then

$$f(z) = \frac{1}{r^2 e^{2i\theta}} = \frac{1}{r^2} (\cos(2\theta) - i\sin(2\theta)).$$

Hence, in the notation of the above theorems,

$$u(r,\theta) = \frac{1}{r^2}\cos(2\theta)$$

and

$$v(r,\theta) = -\frac{1}{r^2}\sin(2\theta).$$

It follows that

$$u_r(r,\theta) = -\frac{2}{r^3}\cos(2\theta)$$
 and $u_\theta(r,\theta) = -\frac{2}{r^2}\sin(2\theta)$

and

$$v_r(r,\theta) = \frac{2}{r^3}\sin(2\theta)$$
 and $v_\theta(r,\theta) = -\frac{2}{r^2}\cos(2\theta)$.

Thus

$$ru_r(r,\theta) = v_\theta(r,\theta)$$
 and $u_\theta(r,\theta) = -rv_r(r,\theta)$,

and so f is differentiable at all $z \neq 0.$ Moreover,

$$f'(z) = e^{-i\theta} \left(-\frac{2}{r^3} \cos(2\theta) + i\frac{2}{r^3} \sin(2\theta) \right)$$
$$= -\frac{2}{r^3} e^{-i\theta} e^{-2i\theta}$$
$$= -\frac{2}{r^3} e^{-3i\theta}$$
$$= -\frac{2}{z^3}.$$