Lecture 14:
 Cauchy-Riemann Equations: Polar Form

Dan Sloughter
Furman University
Mathematics 39

March 31, 2004

14.1 Polar form of the Cauchy-Riemann Equations

Theorem 14.1. Suppose f is defined on an ϵ neighborhood U of a point $z_{0}=r_{0} e^{i \theta_{0}}$,

$$
f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)
$$

and u_{r}, u_{θ}, v_{r}, and v_{θ} exist on U and are continuous at $\left(r_{0}, \theta_{0}\right)$. If f is differentiable at z_{0}, then

$$
r_{0} u_{r}\left(r_{0}, \theta_{0}\right)=v_{\theta}\left(r_{0}, \theta_{0}\right) \text { and } u_{\theta}\left(r_{0}, \theta_{0}\right)=-r_{0} v_{r}\left(r_{0}, \theta_{0}\right)
$$

and

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left(u_{r}\left(r_{0}, \theta_{0}\right)+i v_{r}\left(r_{0}, \theta_{0}\right)\right)
$$

Proof. By the chain rule from multi-variable calculus,

$$
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}
$$

and

$$
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta}
$$

Since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, we have

$$
u_{r}=u_{x} \cos (\theta)+u_{y} \sin (\theta)
$$

and

$$
u_{\theta}=-u_{x} r \sin (\theta)+u_{y} r \cos (\theta) .
$$

Similarly,

$$
v_{r}=v_{x} \cos (\theta)+v_{y} \sin (\theta)
$$

and

$$
v_{\theta}=-v_{x} r \sin (\theta)+v_{y} r \cos (\theta)
$$

Now f is differentiable at z_{0}, and so satisfies the Cauchy-Riemann equations at z_{0}. That is,

$$
u_{x}\left(r_{0}, \theta_{0}\right)=v_{y}\left(r_{0}, \theta_{0}\right) \text { and } u_{y}\left(r_{0}, \theta_{0}\right)=-v_{x}\left(r_{0}, \theta_{0}\right)
$$

Hence

$$
v_{r}\left(r_{0}, \theta_{0}\right)=-u_{y}\left(r_{0}, \theta_{0}\right) \cos (\theta)+u_{x}\left(r_{0}, \theta_{0}\right) \sin (\theta)
$$

and

$$
v_{\theta}\left(r_{0}, \theta_{0}\right)=u_{y}\left(r_{0}, \theta_{0}\right) r \sin (\theta)+u_{x}\left(r_{0}, \theta_{0}\right) r \cos (\theta)
$$

It follows that

$$
r_{0} u_{r}\left(r_{0}, \theta_{0}\right)=v_{\theta}\left(r_{0}, \theta_{0}\right) \text { and } u_{\theta}\left(r_{0}, \theta_{0}\right)=-r_{0} v_{r}\left(r_{0}, \theta_{0}\right)
$$

The final statement of the theorem is left as an exercise.
Theorem 14.2. Suppose f is defined on an ϵ neighborhood U of a point $z_{0}=r_{0} e^{i \theta_{0}}$,

$$
f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)
$$

and u_{r}, u_{θ}, v_{r}, and v_{θ} exist on U and are continuous at $\left(r_{0}, \theta_{0}\right)$. If

$$
r_{0} u_{r}\left(r_{0}, \theta_{0}\right)=v_{\theta}\left(r_{0}, \theta_{0}\right) \text { and } u_{\theta}\left(r_{0}, \theta_{0}\right)=-r_{0} v_{r}\left(r_{0}, \theta_{0}\right),
$$

then f is differentiable at z_{0}.
Proof. The proof is left as a homework exercise.
Example 14.1. For $z \neq 0$, let

$$
f(z)=\frac{1}{z^{2}} .
$$

If we write $z=r e^{i \theta}$, then

$$
f(z)=\frac{1}{r^{2} e^{2 i \theta}}=\frac{1}{r^{2}}(\cos (2 \theta)-i \sin (2 \theta)) .
$$

Hence, in the notation of the above theorems,

$$
u(r, \theta)=\frac{1}{r^{2}} \cos (2 \theta)
$$

and

$$
v(r, \theta)=-\frac{1}{r^{2}} \sin (2 \theta)
$$

It follows that

$$
u_{r}(r, \theta)=-\frac{2}{r^{3}} \cos (2 \theta) \text { and } u_{\theta}(r, \theta)=-\frac{2}{r^{2}} \sin (2 \theta)
$$

and

$$
v_{r}(r, \theta)=\frac{2}{r^{3}} \sin (2 \theta) \text { and } v_{\theta}(r, \theta)=-\frac{2}{r^{2}} \cos (2 \theta)
$$

Thus

$$
r u_{r}(r, \theta)=v_{\theta}(r, \theta) \text { and } u_{\theta}(r, \theta)=-r v_{r}(r, \theta),
$$

and so f is differentiable at all $z \neq 0$. Moreover,

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left(-\frac{2}{r^{3}} \cos (2 \theta)+i \frac{2}{r^{3}} \sin (2 \theta)\right) \\
& =-\frac{2}{r^{3}} e^{-i \theta} e^{-2 i \theta} \\
& =-\frac{2}{r^{3}} e^{-3 i \theta} \\
& =-\frac{2}{z^{3}}
\end{aligned}
$$

