Lecture 12:

 Derivatives

 Derivatives}

Dan Sloughter
Furman University
Mathematics 39

March 24, 2004

12.1 The derivative

Definition 12.1. Suppose f is defined on a neighborhood of a point $z_{0} \in \mathbb{C}$. We say f is differentiable at z_{0} if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists, in which case we call

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

the derivative of f at z_{0}.
Note that, letting $\Delta z=z-z_{0}$, we could also write

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} .
$$

Moreover, if we let $w=f(z)$ and $\Delta w=f(z+\Delta z)-f(z)$, then we may write

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}=\frac{d w}{d z} .
$$

Example 12.1. Suppose $f(z)=z^{n}$, where n is a positive integer. Then

$$
\begin{aligned}
f(z+\Delta z)-f(z) & =(z+\Delta z)^{n}-z^{n} \\
& =\left(z^{n}+n z^{n-1} \Delta z+\cdots+n z(\Delta z)^{n-1}+(\Delta z)^{n}\right)-z^{n} \\
& =n z^{n-1} \Delta z+\cdots+n z(\Delta z)^{n-1}+(\Delta z)^{n},
\end{aligned}
$$

so

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=n z^{n-1}+\cdots+n z(\Delta z)^{n-2}+(\Delta z)^{n-1} .
$$

Hence

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=n z^{n-1} .
$$

Example 12.2. Let

$$
f(z)=|z|^{2}=z \bar{z}
$$

Then

$$
\begin{aligned}
\frac{f(z+\Delta z)-f(z)}{\Delta z} & =\frac{(z+\Delta z)(\bar{z}+\overline{\Delta z})-z \bar{z}}{\Delta z} \\
& =\frac{z \overline{\Delta z}+\bar{z} \Delta z+\Delta z \overline{\Delta z}}{\Delta z} \\
& =\bar{z}+\overline{\Delta z}+z \frac{\overline{\Delta z}}{\Delta z} .
\end{aligned}
$$

It follows that

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z} \rightarrow \bar{z}+z
$$

as $\Delta z \rightarrow 0$ along the real axis and

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z} \rightarrow \bar{z}-z
$$

as $\Delta z \rightarrow 0$ along the imaginary axis. Hence f is not differentiable at any $z \neq 0$. If $z=0$, then

$$
\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \overline{\Delta z}=0
$$

and so $f^{\prime}(0)=0$. Note that if we write $f(x+i y)=u(x, y)+i v(x, y)$, then

$$
u(x, y)=x^{2}+y^{2}
$$

and

$$
v(x, y)=0
$$

Hence u and v have continuous partial derivatives of all order. This shows that the differentiability of u and v does not imply that f is differentiable. Moreover, note that this also shows that a function may be continuous at a point without being differentiable at that point.

Proposition 12.1. If f is differentiable at z_{0}, then f is continuous at z_{0}.
Proof. We need to show that

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

or, equivalently, that

$$
\lim _{z \rightarrow z_{0}}\left(f(z)-f\left(z_{0}\right)\right)=0
$$

The latter follows from

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}\left(f(z)-f\left(z_{0}\right)\right) & =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right) \\
& =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \\
& =f^{\prime}\left(z_{0}\right)(0) \\
& =0
\end{aligned}
$$

12.2 Differentiation formulas

Proposition 12.2. If $c \in \mathbb{C}$ and $f(z)=c$ for all $c \in \mathbb{C}$, then $f^{\prime}(z)=0$ for all $z \in \mathbb{C}$.

Proof. We have

$$
f^{\prime}(z)=\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}=\lim _{w \rightarrow z} \frac{c-c}{w-z}=0
$$

Proposition 12.3. If $c \in \mathbb{C}$ and f is differentiable at z, then

$$
\frac{d}{d z}(c f(z))=c f^{\prime}(z) .
$$

Proof. We have

$$
\frac{d}{d z}(c f(z))=\lim _{w \rightarrow z} \frac{c f(w)-c f(z)}{w-z}=c \lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}=c f^{\prime}(z)
$$

Proposition 12.4. If f and g are both differentiable at z, then

$$
\begin{gathered}
\frac{d}{d z}(f(z)+g(z))=f^{\prime}(z)+g^{\prime}(z) \\
\frac{d}{d z} f(z) g(z)=f(z) g^{\prime}(z)+g(z) f^{\prime}(z)
\end{gathered}
$$

and, if $g(z) \neq 0$,

$$
\frac{d}{d z} \frac{f(z)}{g(z)}=\frac{g(z) f^{\prime}(z)-f(z) g^{\prime}(z)}{(g(z))^{2}}
$$

Proof. For the first statement, we have

$$
\begin{aligned}
\frac{d}{d z}(f(z)+g(z)) & =\lim _{w \rightarrow z} \frac{(f(w)+g(w))-(f(z)+g(z))}{w-z} \\
& =\lim _{w \rightarrow z}\left(\frac{f(w)-f(z)}{w-z}+\frac{g(w)-g(z)}{w-z}\right) \\
& =f^{\prime}(z)+g^{\prime}(z) .
\end{aligned}
$$

For the second,

$$
\begin{aligned}
\frac{d}{d z} f(z) g(z) & =\lim _{w \rightarrow z} \frac{f(w) g(w)-f(z) g(z)}{w-z} \\
& =\lim _{w \rightarrow z} \frac{f(w) g(w)-f(z) g(w)+f(z) g(w)-f(z) g(z)}{w-z} \\
& =\lim _{w \rightarrow z}\left(g(w) \frac{f(w)-f(z)}{w-z}+f(z) \frac{g(w)-g(z)}{w-z}\right) \\
& =g(z) f^{\prime}(z)+f(z) g^{\prime}(z) .
\end{aligned}
$$

And for the third,

$$
\begin{aligned}
\frac{d}{d z} \frac{f(z)}{g(z)} & =\lim _{w \rightarrow z} \frac{\frac{f(w)}{g(w)}-\frac{f(z)}{g(z)}}{w-z} \\
& =\lim _{w \rightarrow z} \frac{f(w) g(z)-f(z) g(w)}{g(w) g(z)(w-z)} \\
& =\lim _{w \rightarrow z} \frac{f(w) g(z)-f(z) g(z)+f(z) g(z)-f(z) g(w)}{g(w) g(z)(w-z)} \\
& =\lim _{w \rightarrow z} \frac{g(z) \frac{f(w)-f(z)}{w-z}-f(z) \frac{g(w)-g(z)}{w-z}}{g(w)(g(z))} \\
& =\frac{g(z) f^{\prime}(z)-f(z) g^{\prime}(z)}{(g(z))^{2}} .
\end{aligned}
$$

Proposition 12.5. If f is differentiable at z_{0} and g is differentiable at $f\left(z_{0}\right)$, then

$$
(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)
$$

Proof. Let $w_{0}=f\left(z_{0}\right)$ and choose $\epsilon>0$ so that g is defined on the ϵ neighborhood of w_{0}. Call this neighborhood W. For $w \in W$, define

$$
\Phi(w)= \begin{cases}\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}-g^{\prime}\left(w_{0}\right), & \text { if } w \neq w_{0} \\ 0, & \text { if } w=w_{0}\end{cases}
$$

Note that

$$
\lim _{w \rightarrow w_{0}} \Phi(w)=g^{\prime}\left(w_{0}\right)-g^{\prime}\left(w_{0}\right)=0=\Phi\left(w_{0}\right)
$$

so Φ is continuous at w_{0}. It also follows that

$$
g(w)-g\left(w_{0}\right)=\left(g^{\prime}\left(w_{0}\right)+\Phi(w)\right)\left(w-w_{0}\right)
$$

for all $w \in W$. Now choose $\delta>0$ so that f is defined for all z in the δ neighborhood of z_{0} and $f(z) \in W$ whenever z is in this neighborhood (such a δ exists because f is continuous at z_{0}). Call this neighborhood U. We then have that

$$
g(f(z))-g\left(f\left(z_{0}\right)\right)=\left(g^{\prime}\left(f\left(z_{0}\right)\right)+\Phi(f(z))\right)\left(f(z)-f\left(z_{0}\right)\right)
$$

for all $z \in U$. Hence we have

$$
\begin{aligned}
(g \circ f)^{\prime}\left(z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right.}{z-z_{0}} \\
& =\lim _{z \rightarrow z_{0}}\left(g^{\prime}\left(f\left(z_{0}\right)\right)+\Phi(f(z))\right) \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
& =g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

