Lecture 11: Continuity

Dan Sloughter
Furman University
Mathematics 39

March 22, 2004

11.1 Continuous functions

Definition 11.1. Suppose $S \subset \mathbb{C}$ and $f: S \rightarrow \mathbb{C}$. We say f is continuous at z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

If S is a region, we say f is continuous on S if f is continuous at each point of S.

Note that f is continuous at z_{0} if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon
$$

whenever

$$
\left|z-z_{0}\right|<\delta
$$

Proposition 11.1. If f and g are both continuous at z_{0}, then the functions

$$
h(z)=f(z)+g(z)
$$

and

$$
k(z)=f(z) g(z)
$$

are continuous at z_{0}. Moreover, if $g\left(z_{0}\right) \neq 0$, then the function

$$
r(z)=\frac{f(z)}{g(z)}
$$

is continuous at z_{0}.

Proof. These results follow immediately from our results about limits of sums, products, and quotients.

Example 11.1. If $P: \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial, then P is continuous on \mathbb{C}.
Example 11.2. If R is a rational function and z_{0} is a point in the domain of R, then R is continuous at z_{0}.

Proposition 11.2. Suppose $f(x+i y)=u(x, y)+i v(x, y)$. Then f is continuous at $z_{0}=x_{0}+i y_{0}$ if and only if u and v are both continuous at (x_{0}, y_{0}).

Proof. This, again, is a consequence of the corresponding result about limits.

Example 11.3. The function

$$
f(x+i y)=\left(x^{2}-2 x y\right)+i \sin (x+y)
$$

is continuous on \mathbb{C}.
Proposition 11.3. If f is continuous at z_{0} and g is continuous at $w_{0}=f\left(z_{0}\right)$, then $g \circ f$ is continuous at z_{0}.

Proof. Given $\epsilon>0$, we need to find $\delta>0$ such that

$$
\left|g(f(z))-g\left(f\left(z_{0}\right)\right)\right|<\epsilon
$$

whenever

$$
\left|z-z_{0}\right|<\delta
$$

Since g is continuous at w_{0}, we may choose $\delta_{1}>0$ so that

$$
\left|g(w)-g\left(w_{0}\right)\right|<\epsilon
$$

whenever

$$
\left|w-w_{0}\right|<\delta_{1} .
$$

Since f is continuous at z_{0}, we may choose $\delta>0$ so that

$$
\left|f(z)-f\left(z_{0}\right)\right|<\delta_{1}
$$

whenever

$$
\left|z-z_{0}\right|<\delta
$$

Since $f\left(z_{0}\right)=w_{0}$, it now follows that

$$
\left|g(f(z))-g\left(f\left(z_{0}\right)\right)\right|<\epsilon
$$

whenever

$$
\left|z-z_{0}\right|<\delta
$$

and so $\lim _{z \rightarrow z_{0}} g(f(z))=g\left(f\left(z_{0}\right)\right)$. Hence $g \circ f$ is continuous at z_{0}.
Example 11.4. The function

$$
f(z)=|z|
$$

is continuous on $\mathbb{C}\left(f\right.$ is the composition of the function $g(x+i y)=x^{2}+y^{2}$ with the function $h(x)=\sqrt{x})$.

Proposition 11.4. If f is continuous at z_{0} with $f\left(z_{0}\right) \neq 0$, then there exists a neighborhood U of z_{0} for which $f(z) \neq 0$ for all $z \in U$.

Proof. Let

$$
\epsilon=\frac{\left|f\left(z_{0}\right)\right|}{2}
$$

Then there exists $\delta>0$ such that, if U is the δ neighborhood of z_{0},

$$
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon
$$

whenever $z \in U$. It follows that if $z \in U$,

$$
|f(z)|=\left|\left(f(z)-f\left(z_{0}\right)\right)+f\left(z_{0}\right)\right| \geq\left|\left|f\left(z_{0}\right)\right|-\left|f(z)-f\left(z_{0}\right)\right|\right|>\frac{\left|f\left(z_{0}\right)\right|}{2}
$$

Hence $f(z) \neq 0$ for all $z \in U$.

