Lecture 10: The Point at Infinity

Dan Sloughter
Furman University
Mathematics 39

March 19, 2004

10.1 The point at infinity

Let S be the unit sphere in \mathbb{R}^{3} with center at $(0,0,0)$ and let $N=(0,0,1)$, the north pole of S. If P is any point on S other than N, then the line through N and P intersects the $x y$-plane, considered as the complex plane \mathbb{C}, in a unique point z. Note that if $P=(u, v, w)$ with $w>0$, then z lies outside the unit circle C centered at the origin; if $w=0$, then z lies on C; and if $w<0$, then z lies inside C, with $z=0$ if $P=(0,0,-1)$. In this way we create a one-to-one correspondence between points $P \neq N$ on the sphere and the complex plane. We extend this one-to-one correspondence by letting N be the point at infinity, thus creating a one-to-one correspondence between S and what we will call the extended complex plane.

Note that a neighborhood of N on S corresponds to a set in \mathbb{C} of the form

$$
\left\{z \in \mathbb{C}:|z|>\frac{1}{\epsilon}\right\}
$$

for some $\epsilon>0$. For this reason, we call such a set an ϵ neighborhood of ∞. Using such neighborhoods in addition to those defined previously, we may extend the definition of

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

to include the cases where one or both of z_{0} and w_{0} is the point at infinity.

Proposition 10.1. Let $z_{0} \in \mathbb{C}$ and $w_{0} \in \mathbb{C}$. Then

$$
\begin{gathered}
\lim _{z \rightarrow z_{0}} f(z)=\infty \text { if and only if } \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0 \\
\lim _{z \rightarrow \infty} f(z)=w_{0} \text { if and only if } \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}
\end{gathered}
$$

and

$$
\lim _{z \rightarrow \infty} f(z)=\infty \text { if and only if } \lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}=0
$$

Example 10.1. To evaluate

$$
\lim _{z \rightarrow i} \frac{z+3}{z-i}
$$

we first evaluate

$$
\lim _{z \rightarrow i} \frac{z-i}{z+3}=\frac{0}{3+i}=0
$$

Thus

$$
\lim _{z \rightarrow i} \frac{z+3}{z-i}=\infty
$$

Example 10.2. To evaluate

$$
\lim _{z \rightarrow \infty} \frac{i z+4}{4 z+i}
$$

we first evaluate

$$
\lim _{z \rightarrow 0} \frac{\frac{i}{z}+4}{\frac{4}{z}+i}=\lim _{z \rightarrow 0} \frac{i+4 z}{4+i z}=\frac{1}{4} i
$$

Hence

$$
\lim _{z \rightarrow \infty} \frac{i z+4}{4 z+i}=\frac{1}{4} i .
$$

Example 10.3. To evaluate

$$
\lim _{z \rightarrow \infty} \frac{5 z^{2}+1}{z+3}
$$

we first evaluate

$$
\lim _{z \rightarrow 0} \frac{\frac{1}{z}+3}{\frac{5}{z^{2}}+1}=\lim _{z \rightarrow 0} \frac{z+3 z^{2}}{5+z^{2}}=\frac{0}{5}=0
$$

Hence

$$
\lim _{z \rightarrow \infty} \frac{5 z^{2}+1}{z+3}=\infty
$$

